Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 896 Accesses

Abstract

Currently, the most prominent application of distance geometry is related to molecular geometry. Specifically, the problem is the calculation of the 3D protein structure using distance information obtained from Nuclear Magnetic Resonance (NMR) experiments [79, 80]. It is worth mentioning that the 2002 Nobel Prize in Chemistry was awarded to the chemist Kurt Wüthrich for the development of the application of NMR to determine protein structures using distance information related to atoms that are close enough to be detected by NMR experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. doi:10.1007/s00006-016-0653-2

    Google Scholar 

  2. Brünger, A., Nilges, M.: Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Q. Rev. Biophys. 26, 49–125 (1993)

    Article  Google Scholar 

  3. Cassioli, A., Bordeaux, B., Bouvier, G., Mucherino, A., Alves, R., Liberti, L., Nilges, M., Lavor, C., Malliavin, T.: An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. BMC Bioinform. 16, 16–23 (2015)

    Article  Google Scholar 

  4. Costa, V., Mucherino, A., Lavor, C., Cassioli, A., Carvalho, L., Maculan, N.: Discretization orders for protein side chains. J. Glob. Optim. 60, 333–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  6. Dill, K., MacCallum, J.: The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012)

    Article  Google Scholar 

  7. Donald, B.: Algorithms in Structural Molecular Biology. MIT Press, Boston (2011)

    Google Scholar 

  8. Fidalgo, F., Rodriguez, J.: Quaternions as a tool for merging multiple realization trees. In: Andrioni, A., Lavor, C., Liberti, L., Mucherino, A., Maculan, N., Rodriguez, R. (eds.) Proceedings of the Workshop on Distance Geometry and Applications, pp. 119–124. Universidade Federal do Amazonas, Manaus (2013)

    Google Scholar 

  9. Gibson, K., Scheraga, H.: Energy minimization of rigid-geometry polypeptides with exactly closed disulfide loops. J. Comput. Chem. 18, 403–415 (1997)

    Article  Google Scholar 

  10. Gramacho, W., Mucherino, A., Lavor, C., Maculan, N.: A parallel BP algorithm for the discretizable distance geometry problem. In: IEEE Proceedings of the Workshop on Parallel Computing and Optimization, Shanghai, pp. 1756–1762 (2012)

    Google Scholar 

  11. Havel, T., Wüthrich, K.: A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of1H-1H proximities in solution. Bull. Math. Biol. 46, 673–698 (1984)

    MATH  Google Scholar 

  12. Havel, T., Wüthrich, K.: An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformation in solution. J. Mol. Biol. 182, 281–294 (1985)

    Article  Google Scholar 

  13. Jackson, B., Jordán, T.: On the rigidity of molecular graphs. Combinatorica 28, 645–658 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Glob. Optim. 50, 329–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56, 855–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geometry problem seems easier on proteins. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 47–60. Springer, New York (2013)

    Chapter  Google Scholar 

  17. Mucherino, A.: On the identification of discretization orders for distance geometry with intervals. Lect. Notes Comput. Sci 8085, 231–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mucherino, A., Lavor, C., Liberti, L., Talbi, E.-G.: A parallel version of the branch & prune algorithm for the molecular distance geometry problem. In: ACS/IEEE Proceedings of the International Conference on Computer Systems and Applications, Hammamet, pp. 1–6 (2010)

    Google Scholar 

  19. Nucci, P., Nogueira, L., Lavor, C.: Solving the discretizable molecular distance geometry problem by multiple realization trees. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 161–176. Springer, New York (2013)

    Google Scholar 

  20. Sallaume, S., Martins, S., Ochi, L., Gramacho, W., Lavor, C., Liberti, L.: A discrete search algorithm for finding the structure of protein backbones and side chains. Int. J. Bioinform. Res. Appl. 9, 261–270 (2013)

    Article  Google Scholar 

  21. Schlick, T.: Molecular Modelling and Simulation: An Interdisciplinary Guide. Springer, New York (2002)

    Book  MATH  Google Scholar 

  22. Souza, M., Xavier, A., Lavor, C., Maculan, N.: Hyperbolic smoothing and penalty techniques applied to molecular structure determination. Oper. Res. Lett. 39, 461–465 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Souza, M., Lavor, C., Muritiba, A., Maculan, N.: Solving the molecular distance geometry problem with inaccurate distance data. BMC Bioinform. 14, S71–S76 (2013)

    Article  Google Scholar 

  24. Sylvester, J.: Chemistry and algebra. Nature 17, 284–284 (1877)

    Article  Google Scholar 

  25. Watson, J., Crick, F.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  26. Wüthrich, K.: Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989)

    Article  Google Scholar 

  27. Wüthrich, K.: The way to NMR structures of proteins. Nat. Struct. Biol. 8, 923–925 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Lavor, C., Liberti, L., Lodwick, W.A., Mendonça da Costa, T. (2017). Distance Geometry and Molecular Geometry. In: An Introduction to Distance Geometry applied to Molecular Geometry. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-57183-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57183-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57182-9

  • Online ISBN: 978-3-319-57183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics