Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 865 Accesses

Abstract

One approach that has been used to solve the DGP is to represent it as a continuous optimization problem [59]. To understand it, we consider a DGP with K = 2, V = {u, v, s}, E = {{ u, v}, {v, s}}, where the associated quadratic system is

$$\displaystyle\begin{array}{rcl} (x_{u1} - x_{v1})^{2} + (x_{ u2} - x_{v2})^{2}& =& d_{ uv}^{2} {}\\ (x_{v1} - x_{s1})^{2} + (x_{ v2} - x_{s2})^{2}& =& d_{ vs}^{2}, {}\\ \end{array}$$

which can be rewritten as

$$\displaystyle\begin{array}{rcl} (x_{u1} - x_{v1})^{2} + (x_{ u2} - x_{v2})^{2} - d_{ uv}^{2}& =& 0 {}\\ (x_{v1} - x_{s1})^{2} + (x_{ v2} - x_{s2})^{2} - d_{ vs}^{2}& =& 0. {}\\ \end{array}$$

Consider the function \(f: \mathbb{R}^{6} \rightarrow \mathbb{R}\), defined by

$$\displaystyle\begin{array}{rcl} f(x_{u1},x_{u2},x_{v1},x_{v2},x_{s1},x_{s2})& =& \left ((x_{u1} - x_{v1})^{2} + (x_{ u2} - x_{v2})^{2} - d_{ uv}^{2}\right )^{2} {}\\ & +& \left ((x_{v1} - x_{s1})^{2} + (x_{ v2} - x_{s2})^{2} - d_{ vs}^{2}\right )^{2}. {}\\ \end{array}$$

It is not hard to realize that the solution \(x^{{\ast}}\in \mathbb{R}^{6}\) of the associated DGP can be found by solving the following problem:

$$\displaystyle{ \min _{x\in \mathbb{R}^{6}}f(x). }$$
(3.1)

That is, we wish to find the point \(x^{{\ast}}\in \mathbb{R}^{6}\) which attains the smallest value of f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Floudas, C., Gounaris, C.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gonçalves, D., Mucherino, A.: Discretization orders and efficient computation of Cartesian coordinates for distance geometry. Optim. Lett. 8, 2111–2125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. AMS, Providence (1993)

    Book  MATH  Google Scholar 

  4. Hunt, K.: Structural kinematics of in-parallel-actuated-robot-arms. J. Mech. Transm. Autom. Des. 105, 705–712 (1983)

    Article  Google Scholar 

  5. Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796 (2012)

    Google Scholar 

  6. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56, 3–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lima, R., Martínez, J.: Solving molecular distance geometry problems using a continuous optimization approach. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 213–224. Springer, New York (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Lavor, C., Liberti, L., Lodwick, W.A., Mendonça da Costa, T. (2017). From Continuous to Discrete. In: An Introduction to Distance Geometry applied to Molecular Geometry. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-57183-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57183-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57182-9

  • Online ISBN: 978-3-319-57183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics