Advertisement

Cell Therapy pp 173-196 | Cite as

Cell Reprogramming for Cardiac Regeneration and Rare Disease Modeling

  • Xonia Carvajal-Vergara
  • Juan Roberto Rodríguez-Madoz
  • Beatriz Pelacho
  • Felipe PrósperEmail author
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

The field of regenerative medicine has made great progress with the development of cell reprogramming and gene editing techniques. The option to derive pluripotent cells from somatic cells by overexpression of pluripotent factors or specific molecules, and even more the possibility to reprogram one somatic cell type to another somatic cell type in vitro and in vivo, has offered many new options for future therapies.

In this chapter, we provide an overview of the studies performed to understand the mechanisms and to develop the techniques for cell reprogramming, focusing specially in their application in cardiac regeneration and rare disease modeling. First, we discuss the plasticity of cells and methods for their reprogramming. Also, a description of the different studies for differentiation of pluripotent cells toward cardiovascular cells and direct cell reprogramming is provided. Finally, the use of reprogrammed cells as a model for human pathologies, mainly rare diseases, the different aspects that should be bear in mind for optimal model development, the use of gene editing for creating novel and improved disease models, and the therapeutic applications of iPSC-based models have been thoroughly described in this chapter.

Keywords

Cell reprogramming Induced pluripotent stem cells Gene editing Cardiovascular cells Rare diseases 

References

  1. 1.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010;465:704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Fonseca SAS, Costas RM, Pereira LV. Searching for naïve human pluripotent stem cells. World J Stem Cells. 2015;7:649–56.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17:183–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Schöler HR. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461:649–3.PubMedCrossRefGoogle Scholar
  10. 10.
    González F, Boué S, Izpisúa Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet. 2011;12:231–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–60.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Xiao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells. 2006;24:1476–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Niu Y, Li Y, et al. Generation of Cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell. 2015;17:116–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012;180:2417–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Kobayashi T, Yamaguchi T, Hamanaka S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000.PubMedCrossRefGoogle Scholar
  17. 17.
    Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 1995;9:1250–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Bar-Nur O, Verheul C, Sommer AG, Brumbaugh J, Schwarz BA, Lipchina I, Huebner AJ, Mostoslavsky G, Hochedlinger K. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotechnol. 2015;33:761–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Maza I, Caspi I, Zviran A, et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol. 2015;33:769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol. 2011;13:215–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116:1378–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Chen G. In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron. 2016;91:728–38.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Qian L, Huang Y, Spencer CI, et al. HHS public. Access. 2012;485:593–8.Google Scholar
  24. 24.
    Song K, Nam Y-J, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–1.PubMedCrossRefGoogle Scholar
  26. 26.
    Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481:295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tiscornia G, Vivas EL, Belmonte JCI. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med. 2011;17:1570–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Laube F, Heister M, Scholz C, Borchardt T, Braun T. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci. 2006;119:4719–29.PubMedCrossRefGoogle Scholar
  30. 30.
    Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464:606–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mollova M, Bersell K, Walsh S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110:1446–51.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Naqvi N, Li M, Calvert JW, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157:795–807.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, T-D W, Guerquin-Kern J-L, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Reardon S. New life for pig-to-human transplants. Nature. 2015;527:152–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell. EMBO J. 2015;34:710–38.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marbán E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol. 2014;64:922–37.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gerbin KA, Murry CE. The winding road to regenerating the human heart. Cardiovasc Pathol. 2015;24:133–40.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Prowse ABJ, Timmins NE, Yau TM, Li R-K, Weisel RD, Keller G, Zandstra PW. Transforming the promise of pluripotent stem cell-derived cardiomyocytes to a therapy: challenges and solutions for clinical trials. Can J Cardiol. 2014;30:1335–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Limbourg FP, Ringes-Lichtenberg S, Schaefer A, et al. Haematopoietic stem cells improve cardiac function after infarction without permanent cardiac engraftment. Eur J Heart Fail. 2005;7:722–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Davis DR, Zhang Y, Smith RR, Cheng K, Terrovitis J, Malliaras K, Li T-S, White A, Makkar R, Marbán E. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One. 2009;4:e7195.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6:88–95.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111:344–58.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2008;26:2300–10.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu WZ, Van Biber B, Laflamme MA. Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods Mol Biol. 2011;767:419–31.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One. 2011;6:e23657.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kita-Matsuo H, Barcova M, Prigozhina N, et al. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS One. 2009;4:e5046.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chong JJH, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, Yamanaka S, Nakao K. Induction and isolation of vascular cells from human induced pluripotent stem cells—brief report. Arterioscler Thromb Vasc Biol. 2009;29:1100–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, Cheng T, Li Y, Lo CW, Yang L. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res. 2012;95:327–35.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Staton CA, Reed MWR, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 2009;90:195–221.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gu M, Nguyen PK, Lee AS, et al. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell–derived endothelial cells improve myocardial function by paracrine activation novelty and significance. Circ Res. 2012;111:882–93.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Carvajal-Vergara X, Prósper F. Are we closer to cardiac regeneration? Stem Cell Investig. 2016;3:59.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36:2011–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Bellamy V, Vanneaux V, Bel A, et al. Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant. 2015;34:1198–207.PubMedCrossRefGoogle Scholar
  58. 58.
    Kervadec A, Bellamy V, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant. 2016;35:795–807.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct 4. Cell Rep. 2014;6:951–60.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Li J, Huang NF, Zou J, Laurent TJ, Lee JC, Okogbaa J, Cooke JP, Ding S. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol. 2013;33:1366–75.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Margariti A, Winkler B, Karamariti E, et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci U S A. 2012;109:13793–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhao Y, Londono P, Cao Y, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cao N, Huang Y, Zheng J, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:aaf1502.CrossRefGoogle Scholar
  64. 64.
    Han JK, Chang SH, Cho HJ, et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation. 2014;130:1168–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Wong WT, Cooke JP. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng. 2016;7:2041731416628329.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Van Pham P, NB V, Nguyen HT, et al. Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia. Stem Cell Res Ther. 2016;7:104.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Islas JF, Liu Y, Weng K-C, et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci U S A. 2012;109:13016–21.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lalit PA, Salick MR, Nelson DO, et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell. 2016;18:354–67.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Muraoka N, Ieda M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis. Annu Rev Physiol. 2014;76:21–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Yamakawa H, Ieda M. Strategies for heart regeneration. Int Heart J. 2015;56:1–5.PubMedCrossRefGoogle Scholar
  71. 71.
    107th Congress of the United States of America. Rare Diseases Act of 2002. 2002. p. 1–5.Google Scholar
  72. 72.
    European Commission. Useful Information on rare diseases from an EU perspective. 2005. p. 2005–2006.Google Scholar
  73. 73.
    Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17:170–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Sterneckert JL, Reinhardt P, Scholer HR. Investigating human disease using stem cell models. Nat Rev Genet. 2014;15:625–39.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen KG, Mallon BS, McKay RDG, Robey PG. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 2014;14:13–26.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sun N, Longaker MT, JC W. Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle. 2010;9:880. –885PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zapata-Linares N, Rodriguez S, Salido E, Abizanda G, Iglesias E, Prosper F, Gonzalez-Aseguinolaza G, Rodriguez-Madoz JR. Generation and characterization of human iPSC lines derived from a Primary Hyperoxaluria Type I patient with p.I244T mutation. Stem Cell Res. 2016;16:116–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Raya A, Rodríguez-Pizà I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460:53–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lemonnier T, Blanchard S, Toli D, Roy E, Bigou S, Froissart R, Rouvet I, Vitry S, Heard JM, Bohl D. Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum Mol Genet. 2011;20:3653–66.PubMedCrossRefGoogle Scholar
  80. 80.
    Park I-H. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277–80.PubMedCrossRefGoogle Scholar
  82. 82.
    Carvajal-Vergara X, Sevilla A, D’Souza SL, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465:808–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for Long-QT syndrome. N Engl J Med. 2010;363:1397–409.PubMedCrossRefGoogle Scholar
  84. 84.
    Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang S, Chen S, Li W, et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20:3176–87.PubMedCrossRefGoogle Scholar
  86. 86.
    Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391–4.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ye Z, Zhan H, Dowey S, Williams DM, Jang Y, Dang CV, Spivak JL, Moliterno AR, Cheng L, Mali P. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood Cells. 2009;114:5473–80.CrossRefGoogle Scholar
  88. 88.
    Burkhardt MF, Martinez FJ, Wright S, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2013;56:355–64.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kim JJ. Applications of iPSCs in cancer research. Biomark Insights. 2015;10:125.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Germain ND, Chen P-F, Plocik AM, et al. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol Autism. 2014;5:44.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hibaoui Y, Grad I, Letourneau A, et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med. 2014;6:259–77.PubMedGoogle Scholar
  92. 92.
    Sagie S, Ellran E, Katzir H, Shaked R, Yehezkel S, Laevsky I, Ghanayim A, Geiger D, Tzukerman M, Selig S. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome. Hum Mol Genet. 2014;23:3629–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46:551–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016;18:573–86.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hendriks WT, Warren CR, Cowan CA. Genome editing in human pluripotent stem cells: approaches, pitfalls, and solutions. Cell Stem Cell. 2016;18:53–65.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas system. Science. 2013;339:819–24.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Corti S, Nizzardo M, Simone C, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. 2012;4:165ra162.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ding Q, Lee YK, Schaefer EAK, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013;12:238–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Tai DJC, Ragavendran A, Manavalan P, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517–22.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Maddalo D, Manchado E, Concepcion CP, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 2013;57:2458–68.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Höing S, Rudhard Y, Reinhardt P, et al. Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell. 2012;11:620–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Hanna J, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R, Wernig M. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105:5856–61.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18:533–40.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xonia Carvajal-Vergara
    • 1
  • Juan Roberto Rodríguez-Madoz
    • 1
  • Beatriz Pelacho
    • 1
  • Felipe Prósper
    • 1
    • 2
    Email author
  1. 1.Foundation for Applied Medical Research (FIMA)Cell Therapy ProgramPamplonaSpain
  2. 2.Hematology and Cell TherapyClinica Universidad de NavarraPamplonaSpain

Personalised recommendations