Cell Therapy pp 139-172 | Cite as

Biomaterials and Cells for Revascularization

  • Priscilla A. Williams
  • Kevin T. Campbell
  • Eduardo A. SilvaEmail author
Part of the Molecular and Translational Medicine book series (MOLEMED)


Cell therapy is often hailed for its potential to revolutionize modern medicine and to treat a wide variety of diseases. The growing enthusiasm surrounding cell-based therapies has resulted in more than 14,560 clinical trials recorded by the NIH over the last decade; however, these trials have not resulted in consistent clinical benefit. These disappointing results could stem from both biological and engineering challenges. While supporting the safety of these cells, these trials have indicated several difficulties hampering clinical/translational potential, including the appropriate cell type, the optimal cell dose, the route of cell administration, the efficiency of cell engraftment at the target tissue, and the frequency of treatment required. Biomaterial systems have been used to bypass some of the limitations arising from cell-based therapies. The biomaterials’ microenvironment protects and increases cell functionality and viability. This chapter will focus on the utility of both naturally occurring and synthetic biomaterial systems to bypass some of the current limitations of cell-based approaches for revascularization therapies. Distinctively, this chapter will cover both the blood and lymphatic vessel systems as critically important targets to resolve vascular problems. The introductory chapter provides an overview of the current clinical outlook that will then be reviewed, followed by a critical evaluation of the current barriers and challenges for clinical success. Then various cell types and sources available for use in vascularization and an overview of different biomaterials currently used for cell transplantation and their applications for revascularization will be examined. Finally, future directions for successful cell-based approaches will be discussed.


Therapeutic angiogenesis Tissue engineering Cell homing Naturally occurring polymers Synthetic polymers Alginate PEG Biomedical engineering Ischemic diseases Lymphangiogenesis 


  1. 1.
    Ouma GO, Jonas RA, Usman MH, Mohler ER III. Targets and delivery methods for therapeutic angiogenesis in peripheral artery disease. Vasc Med. 2012;17(3):174–92.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hartley A, Marshall DC, Salciccioli JD, Sikkel MB, Maruthappu M, Shalhoub J. Trends in mortality from ischemic heart disease and cerebrovascular disease in Europe: 1980 to 2009. Circulation. 2016;133(20):1916–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Cerbone AM, Macarone-Palmieri N, Saldalamacchia G, Coppola A, Di Minno G, Rivellese AA. Diabetes, vascular complications and antiplatelet therapy: open problems. Acta Diabetol. 2009;46(4):253–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Simmons A, Steffen K, Sanders S. Medical therapy for peripheral arterial disease. Curr Opin Cardiol. 2012;27(6):592–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Jackson EA, Munir K, Schreiber T, Rubin JR, Cuff R, Gallagher KA, et al. Impact of sex on morbidity and mortality rates after lower extremity interventions for peripheral arterial disease: observations from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. J Am Coll Cardiol. 2014;63(23):2525–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013;10(7):387–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Simons M. Angiogenesis: where do we stand now? Circulation. 2005;111(12):1556–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation. 2000;101(2):118–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res. 2001;49(3):522–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res. 2005;65(3):649–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Iafrati MD, Hallett JW, Geils G, Pearl G, Lumsden A, Peden E, et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg. 2011;54(6):1650–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res. 2013;113(6):810–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation. 2008;118(1):9–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation. 2000;102(11):E73–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol. 2007;25(3):317–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol. 2004;44(8):1690–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3(1):89–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Assmus B, Fischer-Rasokat U, Honold J, Seeger FH, Fichtlscherer S, Tonn T, et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ Res. 2007;100(8):1234–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355(12):1222–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112(9):1288–302.PubMedCrossRefGoogle Scholar
  24. 24.
    Renault MA, Losordo DW. Therapeutic myocardial angiogenesis. Microvasc Res. 2007;74(2–3):159–71.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Williams PA, Silva EA. The role of synthetic extracellular matrices in endothelial progenitor cell homing for treatment of vascular disease. Ann Biomed Eng. 2015;43(10):2301–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Silva EA, Kim ES, Kong HJ, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A. 2008;105(38):14347–52.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J, Nguyen K, et al. Rationale and design of the Transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J. 2011;161(3):487–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, et al. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res. 2015;117(6):558–75.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311(1):62–73.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials. 2011;32(12):3189–209.PubMedCrossRefGoogle Scholar
  31. 31.
    Egeland T, Brinchmann JE. The REPAIR-AMI and ASTAMI trials: cell isolation procedures. Eur Heart J. 2007;28(17):2174–5. author reply 5PubMedCrossRefGoogle Scholar
  32. 32.
    Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007;28(6):766–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Estes ML, Mund JA, Mead LE, Prater DN, Cai S, Wang H, et al. Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A. 2010;77(9):831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol. 2012;32(4):1045–53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood. 2011;117(23):6083–90.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Flores-Guzman P, Fernandez-Sanchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med. 2013;2(11):830–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Horwitz ME. Ex vivo expansion or manipulation of stem cells to improve outcome of umbilical cord blood transplantation. Curr Hematol Malig Rep. 2016;11(1):12–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Lund TC, Boitano AE, Delaney CS, Shpall EJ, Wagner JE. Advances in umbilical cord blood manipulation-from niche to bedside. Nat Rev Clin Oncol. 2015;12(3):163–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Karantalis V, Schulman IH, Balkan W, Hare JM. Allogeneic cell therapy: a new paradigm in therapeutics. Circ Res. 2015;116(1):12–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mattsson J, Ringden O, Storb R. Graft failure after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2008;14(1 Suppl 1):165–70.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    McCune JS, Bemer MJ. Pharmacokinetics, pharmacodynamics and pharmacogenomics of immunosuppressants in allogeneic haematopoietic cell transplantation: part I. Clin Pharmacokinet. 2016;55(5):525–50.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Anderson EM, Kwee BJ, Lewin SA, Raimondo T, Mehta M, Mooney DJ. Local delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and resultant recovery from ischemia. Tissue Eng Part A. 2015;21(7–8):1217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jha AK, Tharp KM, Ye J, Santiago-Ortiz JL, Jackson WM, Stahl A, et al. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials. 2015;47:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, et al. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol. 2013;108(3):346.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol. 2008;45(4):514–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Daniel MG, Lemischka IR, Moore K. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming. Ann N Y Acad Sci. 2016;1370(1):24–35.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Silva EA, Mooney DJ. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol. 2004;64:181–205.PubMedCrossRefGoogle Scholar
  49. 49.
    Vacharathit V, Silva EA, Mooney DJ. Viability and functionality of cells delivered from peptide conjugated scaffolds. Biomaterials. 2011;32(15):3721–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26(15):2455–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Sands RW, Mooney DJ. Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol. 2007;18(5):448–53.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mooney DJ, Vandenburgh H. Cell delivery mechanisms for tissue repair. Cell Stem Cell. 2008;2(3):205–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ. Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng. 2007;13(1):207–17.PubMedCrossRefGoogle Scholar
  55. 55.
    Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979–87.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chaudhuri O, Mooney DJ. Stem-cell differentiation: anchoring cell-fate cues. Nat Mater. 2012;11(7):568–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15(3):326–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Ayala P, Caves J, Dai E, Siraj L, Liu L, Chaudhuri O, et al. Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomater. 2015;26:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wald HL, Sarakinos G, Lyman MD, Mikos AG, Vacanti JP, Langer R. Cell seeding in porous transplantation devices. Biomaterials. 1993;14(4):270–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Wake MC, Patrick CW Jr, Mikos AG. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 1994;3(4):339–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Polak SJ, Rustom LE, Genin GM, Talcott M, Wagoner Johnson AJ. A mechanism for effective cell-seeding in rigid, microporous substrates. Acta Biomater. 2013;9(8):7977–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee EJ, Vunjak-Novakovic G, Wang Y, Niklason LE. A biocompatible endothelial cell delivery system for in vitro tissue engineering. Cell Transplant. 2009;18(7):731–43.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Keskar V, Marion NW, Mao JJ, Gemeinhart RA. In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng Part A. 2009;15(7):1695–707.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Antolinos-Turpin CM, Morales Roman RM, Rodenas-Rochina J, Gomez Ribelles JL, Gomez-Tejedor JA. Macroporous thin membranes for cell transplant in regenerative medicine. Biomaterials. 2015;67:254–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials. 2015;53:502–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. Nat Mater. 2013;12(11):1004–17.PubMedCrossRefGoogle Scholar
  67. 67.
    Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462(7272):426–32.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49(3):507–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Carmeliet P, Jain R. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–33.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Kockx MM, Knaapen MW. The role of apoptosis in vascular disease. J Pathol. 2000;190(3):267–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1):17–46.PubMedCrossRefGoogle Scholar
  80. 80.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Hickey MM, Simon MC. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol. 2006;76:217–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Ji RC. Lymphatic endothelial cells, inflammatory lymphangiogenesis, and prospective players. Curr Med Chem. 2007;14(22):2359–68.PubMedCrossRefGoogle Scholar
  84. 84.
    Nilsson I, Rolny C, Wu Y, Pytowski B, Hicklin D, Alitalo K, et al. Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. FASEB J. 2004;18(13):1507–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Teng X, Li D, Johns RA. Hypoxia up-regulates mouse vascular endothelial growth factor D promoter activity in rat pulmonary microvascular smooth-muscle cells. Chest. 2002;121(3 Suppl):82S–3S.PubMedCrossRefGoogle Scholar
  86. 86.
    Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. 2010;115(2):418–29.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J. 2004;18(10):1111–3.PubMedGoogle Scholar
  88. 88.
    Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762–73.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rutkowski JM, Boardman KC, Swartz MA. Characterization of lymphangiogenesis in a model of adult skin regeneration. Am J Physiol Heart Circ Physiol. 2006;291(3):H1402–10.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 2002;225(3):351–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002;21(17):4593–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438(7070):946–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Ulvmar MH, Makinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res. 2016;111(4):310–21.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jay SM, Shepherd BR, Andrejecsk JW, Kyriakides TR, Pober JS, Saltzman WM. Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials. 2010;31(11):3054–62.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012;2(1):a006429.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Nor JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Investig. 2001;81(4):453–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res. 2002;60(4):668–78.PubMedCrossRefGoogle Scholar
  100. 100.
    Dvorak HF, Mihm MC Jr, Dvorak AM, Barnes BA, Manseau EJ, Galli SJ. Rejection of first-set skin allografts in man. The microvasculature is the critical target of the immune response. J Exp Med. 1979;150(2):322–37.PubMedCrossRefGoogle Scholar
  101. 101.
    Leszczynski D, Laszczynska M, Halttunen J, Hayry P. Renal target structures in acute allograft rejection: a histochemical study. Kidney Int. 1987;31(6):1311–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Matsumoto Y, McCaughan GW, Painter DM, Bishop GA. Evidence that portal tract microvascular destruction precedes bile duct loss in human liver allograft rejection. Transplantation. 1993;56(1):69–75.PubMedCrossRefGoogle Scholar
  103. 103.
    Pober JS, Kluger MS, Schechner JS. Human endothelial cell presentation of antigen and the homing of memory/effector T cells to skin. Ann N Y Acad Sci. 2001;941:12–25.PubMedCrossRefGoogle Scholar
  104. 104.
    Gimbrone MA Jr. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol. 1995;75(6):67B–70B.PubMedCrossRefGoogle Scholar
  105. 105.
    Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 2004;25(7):387–95.PubMedCrossRefGoogle Scholar
  106. 106.
    Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med. 2009;206(13):2925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A. 2002;99(25):16069–74.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liu D, Jia H, Holmes DI, Stannard A, Zachary I. Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arterioscler Thromb Vasc Biol. 2003;23(11):2002–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Schoenfeld J, Lessan K, Johnson NA, Charnock-Jones DS, Evans A, Vourvouhaki E, et al. Bioinformatic analysis of primary endothelial cell gene array data illustrated by the analysis of transcriptome changes in endothelial cells exposed to VEGF-A and PlGF. Angiogenesis. 2004;7(2):143–56.PubMedCrossRefGoogle Scholar
  110. 110.
    Yang S, Toy K, Ingle G, Zlot C, Williams PM, Fuh G, et al. Vascular endothelial growth factor-induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt-1 receptors. Arterioscler Thromb Vasc Biol. 2002;22(11):1797–803.PubMedCrossRefGoogle Scholar
  111. 111.
    Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood. 2008;112(6):2318–26.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. 2002;196(11):1497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74–80.PubMedCrossRefGoogle Scholar
  114. 114.
    Dai T, Jiang Z, Li S, Zhou G, Kretlow JD, Cao W, et al. Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol. 2010;150(1):182–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee SJ, Park C, Lee JY, Kim S, Kwon PJ, Kim W, et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep. 2015;5:11019.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kawamoto A, Asahara T. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv. 2007;70(4):477–84.PubMedCrossRefGoogle Scholar
  117. 117.
    Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J. 2011;32(10):1197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007;82(3):252–64.PubMedCrossRefGoogle Scholar
  119. 119.
    Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl). 2013;91(3):285–95.CrossRefGoogle Scholar
  120. 120.
    Compagna R, Amato B, Massa S, Amato M, Grande R, Butrico L, et al. Cell therapy in patients with critical limb ischemia. Stem Cells Int. 2015;2015:931420.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell. 2000;102(2):199–209.PubMedCrossRefGoogle Scholar
  122. 122.
    Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010;62(12):1167–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Chacko SM, Ahmed S, Selvendiran K, Kuppusamy ML, Khan M, Kuppusamy P. Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol. 2010;299(6):C1562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111(2):150–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med (Berl). 2004;82(10):671–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50(2):266–72.PubMedCrossRefGoogle Scholar
  128. 128.
    Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39(5):733–42.PubMedCrossRefGoogle Scholar
  129. 129.
    Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells. 2011;29(11):1650–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Estes ML, Mund JA, Ingram DA, Case J. Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom. 2010;Chapter 9:Unit 9.33.1–11.Google Scholar
  132. 132.
    Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005;106(5):1525–31.PubMedCrossRefGoogle Scholar
  133. 133.
    Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109(5):1801–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105(1):71–7.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752–60.PubMedCrossRefGoogle Scholar
  136. 136.
    DiMaio TA, Wentz BL, Lagunoff M. Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp Cell Res. 2016;340(1):159–69.PubMedCrossRefGoogle Scholar
  137. 137.
    Nguyen VA, Furhapter C, Obexer P, Stossel H, Romani N, Sepp N. Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics. J Cell Mol Med. 2009;13(3):522–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Tan YZ, Wang HJ, Zhang MH, Quan Z, Li T, He QZ. CD34+ VEGFR-3+ progenitor cells have a potential to differentiate towards lymphatic endothelial cells. J Cell Mol Med. 2014;18(3):422–33.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood. 2003;101(1):168–72.PubMedCrossRefGoogle Scholar
  140. 140.
    Lee JY, Park C, Cho YP, Lee E, Kim H, Kim P, et al. Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization. Circulation. 2010;122(14):1413–25.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97(7):3422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2(7):a006692.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999;10(2):123–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Hubbell JA. Biomaterials in tissue engineering. Biotechnology (N Y). 1995;13(6):565–76.Google Scholar
  146. 146.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353–64.PubMedCrossRefGoogle Scholar
  147. 147.
    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.PubMedCrossRefGoogle Scholar
  148. 148.
    Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog. 1999;15(1):19–32.PubMedCrossRefGoogle Scholar
  149. 149.
    Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N Y Acad Sci. 1999;875:24–35.PubMedCrossRefGoogle Scholar
  150. 150.
    Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82(11):903–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Langer R. Drug delivery and targeting. Nature. 1998;392(6679 Suppl):5–10.PubMedGoogle Scholar
  152. 152.
    Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem. 1995;6(1):123–30.PubMedCrossRefGoogle Scholar
  153. 153.
    Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45–53.PubMedCrossRefGoogle Scholar
  154. 154.
    Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res. 2002;60(2):217–23.PubMedCrossRefGoogle Scholar
  155. 155.
    Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Ahmed TAE, Griffith M, Hincke M. Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. Tissue Eng. 2007;13(7):1469–77.PubMedCrossRefGoogle Scholar
  158. 158.
    Ling WC. Thermal-degradation of gelatin as applied to processing of gel mass. J Pharm Sci. 1978;67(2):218–23.PubMedCrossRefGoogle Scholar
  159. 159.
    Dalev P, Vassileva E, Mark JE, Fakirov S. Enzymatic degradation of formaldehyde-crosslinked gelatin. Biotechnol Tech. 1998;12(12):889–92.CrossRefGoogle Scholar
  160. 160.
    Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release. 2001;70(1–2):63–70.PubMedCrossRefGoogle Scholar
  161. 161.
    Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A. 2009;106(35):14990–5.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Katare R, Riu F, Rowlinson J, Lewis A, Holden R, Meloni M, et al. Perivascular delivery of encapsulated mesenchymal stem cells improves postischemic angiogenesis via paracrine activation of VEGF-A. Arterioscler Thromb Vasc Biol. 2013;33(8):1872–80.PubMedCrossRefGoogle Scholar
  164. 164.
    Man Y, Wang P, Guo Y, Xiang L, Yang Y, Qu Y, et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012;33(34):8802–11.PubMedCrossRefGoogle Scholar
  165. 165.
    Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC, et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A. 2009;15(6):1363–71.PubMedCrossRefGoogle Scholar
  166. 166.
    Chekanov V, Akhtar M, Tchekanov G, Dangas G, Shehzad MZ, Tio F, et al. Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin Electrophysiol. 2003;26(1 Pt 2):496–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654–60.PubMedCrossRefGoogle Scholar
  168. 168.
    Huang NF, Lam A, Fang Q, Sievers RE, Li S, Lee RJ. Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen Med. 2009;4(4):527–38.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Sakai T, Li RK, Weisel RD, Mickle DA, Kim ET, Jia ZQ, et al. The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J Thorac Cardiovasc Surg. 2001;121(5):932–42.PubMedCrossRefGoogle Scholar
  170. 170.
    Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22(10):2027–39.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Zeng X, Zeng YS, Ma YH, Lu LY, Du BL, Zhang W, et al. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant. 2011;20(11–12):1881–99.PubMedCrossRefGoogle Scholar
  172. 172.
    Hwang JH, Kim IG, Lee JY, Piao S, Lee DS, Lee TS, et al. Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogel. Biomaterials. 2011;32(19):4415–23.PubMedCrossRefGoogle Scholar
  173. 173.
    Hwang JH, Kim IG, Piao S, Jung AR, Lee JY, Park KD, et al. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials. 2013;34(25):6037–45.PubMedCrossRefGoogle Scholar
  174. 174.
    Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8(3):71–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Winn SR, Tresco PA, Zielinski B, Greene LA, Jaeger CB, Aebischer P. Behavioral recovery following intrastriatal implantation of microencapsulated PC12 cells. Exp Neurol. 1991;113(3):322–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Andersen T, Auk-Emblem P, Dornish M. 3D cell culture in alginate hydrogels. Microarrays (Basel). 2015;4(2):133–61.CrossRefGoogle Scholar
  177. 177.
    Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–10.PubMedCrossRefGoogle Scholar
  178. 178.
    Rokstad AM, Donati I, Borgogna M, Oberholzer J, Strand BL, Espevik T, et al. Cell-compatible covalently reinforced beads obtained from a chemoenzymatically engineered alginate. Biomaterials. 2006;27(27):4726–37.PubMedCrossRefGoogle Scholar
  179. 179.
    Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog. 2001;17(5):945–50.PubMedCrossRefGoogle Scholar
  180. 180.
    Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001;80(11):2025–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Dhoot NO, Tobias CA, Fischer I, Wheatley MA. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A. 2004;71a(2):191–200.CrossRefGoogle Scholar
  182. 182.
    Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci. 2002;115(Pt 7):1423–33.PubMedGoogle Scholar
  183. 183.
    Medved L, Litvinovich S, Ugarova T, Matsuka Y, Ingham K. Domain structure and functional activity of the recombinant human fibrinogen gamma-module (gamma148-411). Biochemistry. 1997;36(15):4685–93.PubMedCrossRefGoogle Scholar
  184. 184.
    Tennent GA, Brennan SO, Stangou AJ, O'Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood. 2007;109(5):1971–4.PubMedCrossRefGoogle Scholar
  185. 185.
    Brown AC, Barker TH. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 2014;10(4):1502–14.PubMedCrossRefGoogle Scholar
  186. 186.
    Jennewein C, Tran N, Paulus P, Ellinghaus P, Eble JA, Zacharowski K. Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med. 2011;17(5–6):568–73.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Weisel JW. Structure of fibrin: impact on clot stability. J Thromb Haemost. 2007;5(Suppl 1):116–24.PubMedCrossRefGoogle Scholar
  188. 188.
    Sanchez-Cortes J, Mrksich M. The platelet integrin alphaIIbbeta3 binds to the RGD and AGD motifs in fibrinogen. Chem Biol. 2009;16(9):990–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Ye L, Zimmermann WH, Garry DJ, Zhang JY. Patching the heart cardiac repair from within and outside. Circ Res. 2013;113(7):922–32.PubMedCrossRefGoogle Scholar
  190. 190.
    Duan H, Umar S, Xiong R, Chen J. New strategy for expression of recombinant hydroxylated human-derived gelatin in Pichia pastoris KM71. J Agric Food Chem. 2011;59(13):7127–34.PubMedCrossRefGoogle Scholar
  191. 191.
    Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161(1):38–49.PubMedCrossRefGoogle Scholar
  192. 192.
    Wang H, Boerman OC, Sariibrahimoglu K, Li Y, Jansen JA, Leeuwenburgh SC. Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: bone morphogenetic protein-2 and alkaline phosphatase. Biomaterials. 2012;33(33):8695–703.PubMedCrossRefGoogle Scholar
  193. 193.
    Bode F, da Silva MA, Drake AF, Ross-Murphy SB, Dreiss CA. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules. 2011;12(10):3741–52.PubMedCrossRefGoogle Scholar
  194. 194.
    Ford MC, Bertram JP, Hynes SR, Michaud M, Li Q, Young M, et al. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc Natl Acad Sci U S A. 2006;103(8):2512–7.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Vigen M, Ceccarelli J, Putnam AJ. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol Biosci. 2014;14(10):1368–79.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Bearzi C, Gargioli C, Baci D, Fortunato O, Shapira-Schweitzer K, Kossover O, et al. PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell Death Dis. 2014;5:e1053.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Holder WD, Gruber HE, Roland WD, Moore AL, Culberson CR, Loebsack AB, et al. Increased vascularization and heterogeneity of vascular structures occurring in polyglycolide matrices containing aortic endothelial cells implanted in the rat. Tissue Eng. 1997;3(2):149–60.CrossRefGoogle Scholar
  198. 198.
    Duan CG, Liu J, Yuan Z, Meng GL, Yang XM, Jia SJ, et al. Adenovirus-mediated transfer of VEGF into marrow stromal cells combined with PLGA/TCP scaffold increases vascularization and promotes bone repair in vivo. Arch Med Sci. 2014;10(1):174–81.PubMedCrossRefGoogle Scholar
  199. 199.
    Sun H, Qu Z, Guo Y, Zang G, Yang B. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed Eng Online. 2007;6:41.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A. 2003;100(22):12741–6.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99(7):4391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Hu J, Sun X, Ma H, Xie C, Chen YE, Ma PX. Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials. 2010;31(31):7971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Kim KL, Han DK, Park K, Song SH, Kim JY, Kim JM, et al. Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials. 2009;30(22):3742–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Li W, Zhang G, Sheng W, Liu Z, Jia X. Grafting poly(ethylene glycol) onto single-walled carbon nanotubes by living anionic ring-opening polymerization. J Nanosci Nanotechnol. 2016;16(1):576–80.PubMedCrossRefGoogle Scholar
  205. 205.
    Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631–43.PubMedCrossRefGoogle Scholar
  206. 206.
    West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules. 1999;32(1):241–4.CrossRefGoogle Scholar
  207. 207.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003;17(15):2260–2.PubMedGoogle Scholar
  208. 208.
    Kraehenbuehl TP, Ferreira LS, Zammaretti P, Hubbell JA, Langer R. Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials. 2009;30(26):4318–24.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Leslie-Barbick JE, Moon JJ, West JL. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed. 2009;20(12):1763–79.PubMedCrossRefGoogle Scholar
  210. 210.
    Peters EB, Christoforou N, Leong KW, Truskey GA, West JL. Poly(ethylene glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells. Cell Mol Bioeng. 2016;9(1):38–54.PubMedCrossRefGoogle Scholar
  211. 211.
    Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16(5):224–30.PubMedCrossRefGoogle Scholar
  212. 212.
    Mooney DJ, Breuer C, McNamara K, Vacanti JP, Langer R. Fabricating tubular devices from polymers of lactic and glycolic acid for tissue engineering. Tissue Eng. 1995;1(2):107–18.PubMedCrossRefGoogle Scholar
  213. 213.
    Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121(1–2):3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev. 2004;104(12):6147–76.PubMedCrossRefGoogle Scholar
  215. 215.
    Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17(2):103–14.PubMedCrossRefGoogle Scholar
  216. 216.
    Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Ito Y. Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter. 2008;4(1):46–56.CrossRefGoogle Scholar
  218. 218.
    Yoon JJ, Song SH, Lee DS, Park TG. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials. 2004;25(25):5613–20.PubMedCrossRefGoogle Scholar
  219. 219.
    Tsuji H. Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliv Rev. 2016;107:97–135.PubMedCrossRefGoogle Scholar
  220. 220.
    Park A, Wu B, Griffith LG. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(l-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed. 1998;9(2):89–110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Priscilla A. Williams
    • 1
  • Kevin T. Campbell
    • 1
  • Eduardo A. Silva
    • 1
    Email author
  1. 1.Biomedical EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations