Cell Therapy for Epilepsy

  • Chiara Falcicchia
  • Giovanna Paolone
  • Michele SimonatoEmail author
Part of the Molecular and Translational Medicine book series (MOLEMED)


Epilepsy is one of the most common chronic neurological conditions that affects about 1% of the world population. One third of the epilepsies are refractory to medical treatment, and, therefore, it is important to search for alternative treatments. One of these alternative approaches could be cell therapy. In this chapter, we provide an overview of the results obtained by the direct grafting of cells in various animal models of drug-resistant epilepsy and discuss the potential of this approach and the issues that remain to be addressed before attempting translation in humans. In addition, we discuss a new cell therapy approach based on the encapsulated cell biodelivery (ECB) system and introduce preliminary data from our laboratory.


Epilepsy Cell grafting Encapsulated cell biodelivery BDNF GDNF 


  1. 1.
    Reynolds EH, Kinnier Wilson JV. Psychoses of epilepsy in Babylon: the oldest account of the disorder. Epilepsia. 2008;49(9):1488–90. doi: 10.1111/j.1528-1167.2008.01614.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Zanchin G. Considerations on “the sacred disease” by Hippocrates. J Hist Neurosci. 1992;1(2):91–5. doi: 10.1080/09647049209525520.CrossRefPubMedGoogle Scholar
  3. 3.
    Fisher RS. Commentary: operational definition of epilepsy survey. Epilepsia. 2014;55(11):1688. doi: 10.1111/epi.12829.CrossRefPubMedGoogle Scholar
  4. 4.
    Sridharan R. Epidemiology of epilepsy. Curr Sci India. 2002;82(6):664–70.Google Scholar
  5. 5.
    Stephen LJ, Brodie MJ. Epilepsy in elderly people. Lancet. 2000;355(9213):1441–6. doi: 10.1016/S0140-6736(00)02149-8.CrossRefPubMedGoogle Scholar
  6. 6.
    TL B, WJ B. Pathological findings in epilepsy. Surgical treatment of the epilepsies. New York: Raven Press; 1987.Google Scholar
  7. 7.
    Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983;9(3):315–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Biagini G, Baldelli E, Longo D, Pradelli L, Zini I, Rogawski MA, et al. Endogenous neurosteroids modulate epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol. 2006;201(2):519–24. doi: 10.1016/j.expneurol.2006.04.029.CrossRefPubMedGoogle Scholar
  9. 9.
    Pitkanen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 2002;1(3):173–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia. 1991;32(6):778–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9. doi: 10.1056/NEJM200002033420503.CrossRefPubMedGoogle Scholar
  12. 12.
    Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011;10(2):173–86. doi: 10.1016/S1474-4422(10)70310-0.CrossRefPubMedGoogle Scholar
  13. 13.
    Stafstrom CE. Epilepsy comorbidities: how can animal models help? Adv Exp Med Biol. 2014;813:273–81. doi: 10.1007/978-94-017-8914-1_22.CrossRefPubMedGoogle Scholar
  14. 14.
    Shetty AK, Upadhya D. GABA-ergic cell therapy for epilepsy: advances, limitations and challenges. Neurosci Biobehav Rev. 2016;62:35–47. doi: 10.1016/j.neubiorev.2015.12.014.CrossRefPubMedGoogle Scholar
  15. 15.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Shetty AK, Zaman V, Hattiangady B. Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci. 2005;25(37):8391–401. doi: 10.1523/JNEUROSCI.1538-05.2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Ruschenschmidt C, Koch PG, Brustle O, Beck H. Functional properties of ES cell-derived neurons engrafted into the hippocampus of adult normal and chronically epileptic rats. Epilepsia. 2005;46(Suppl 5):174–83. doi: 10.1111/j.1528-1167.2005.01028.x. CrossRefPubMedGoogle Scholar
  18. 18.
    Carpentino JE, Hartman NW, Grabel LB, Naegele JR. Region-specific differentiation of embryonic stem cell-derived neural progenitor transplants into the adult mouse hippocampus following seizures. J Neurosci Res. 2008;86(3):512–24. doi: 10.1002/jnr.21514.CrossRefPubMedGoogle Scholar
  19. 19.
    Shetty AK, Hattiangady B. Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells. 2007;25(10):2396–407. doi: 10.1634/stemcells.2007-0313.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Costa-Ferro ZS, Souza BS, Leal MM, Kaneto CM, Azevedo CM, da Silva IC, et al. Transplantation of bone marrow mononuclear cells decreases seizure incidence, mitigates neuronal loss and modulates pro-inflammatory cytokine production in epileptic rats. Neurobiol Dis. 2012;46(2):302–13. doi: 10.1016/j.nbd.2011.12.001. CrossRefPubMedGoogle Scholar
  21. 21.
    Palma E, Roseti C, Maiolino F, Fucile S, Martinello K, Mazzuferi M, et al. GABA(A)-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABA(A) “phasic” receptors. Proc Natl Acad Sci U S A. 2007;104(52):20944–8. doi: 10.1073/pnas.0710522105. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Soukupova M, Binaschi A, Falcicchia C, Zucchini S, Roncon P, Palma E, et al. Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Exp Neurol. 2014;257:39–49. doi: 10.1016/j.expneurol.2014.04.014.CrossRefPubMedGoogle Scholar
  23. 23.
    Hattiangady B, Rao MS, Shetty AK. Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol. 2008;212(2):468–81. doi: 10.1016/j.expneurol.2008.04.040.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci U S A. 2009;106(36):15472–7. doi: 10.1073/pnas.0900141106. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gallego JM, Sancho FJ, Vidueira S, Ortiz L, Gomez-Pinedo U, Barcia JA. Injection of embryonic median ganglionic eminence cells or fibroblasts within the amygdala in rats kindled from the piriform cortex. Seizure. 2010;19(8):461–6. doi: 10.1016/j.seizure.2010.06.001.CrossRefPubMedGoogle Scholar
  26. 26.
    De la Cruz E, Zhao M, Guo L, Ma H, Anderson SA, Schwartz TH. Interneuron progenitors attenuate the power of acute focal ictal discharges. Neurotherapeutics. 2011;8(4):763–73. doi: 10.1007/s13311-011-0058-9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Roper SN, Steindler DA. Stem cells as a potential therapy for epilepsy. Exp Neurol. 2013;244:59–66. doi: 10.1016/j.expneurol.2012.01.004.CrossRefPubMedGoogle Scholar
  28. 28.
    Long Q, Qiu B, Wang K, Yang J, Jia C, Xin W, et al. Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy. Brain Res. 2013;1532:1–13. doi: 10.1016/j.brainres.2013.07.020.CrossRefPubMedGoogle Scholar
  29. 29.
    Emerich DF, Orive G, Thanos C, Tornoe J, Wahlberg LU. Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev. 2014;67–68:131–41. doi: 10.1016/j.addr.2013.07.008.CrossRefPubMedGoogle Scholar
  30. 30.
    Lindvall O, Wahlberg LU. Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson’s disease? Exp Neurol. 2008;209(1):82–8. doi: 10.1016/j.expneurol.2007.08.019.CrossRefPubMedGoogle Scholar
  31. 31.
    Nikitidou L, Torp M, Fjord-Larsen L, Kusk P, Wahlberg LU, Kokaia M. Encapsulated galanin-producing cells attenuate focal epileptic seizures in the hippocampus. Epilepsia. 2014;55(1):167–74. doi: 10.1111/epi.12470. CrossRefPubMedGoogle Scholar
  32. 32.
    Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V. Galanin—a novel biologically active peptide from porcine intestine. FEBS Lett. 1983;164(1):124–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Kuteeva E, Wardi T, Lundstrom L, Sollenberg U, Langel U, Hokfelt T, et al. Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology. 2008;33(11):2573–85. doi: 10.1038/sj.npp.1301660.CrossRefPubMedGoogle Scholar
  34. 34.
    Counts SE, He B, Che S, Ginsberg SD, Mufson EJ. Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer's disease. J Alzheimer's Dis. 2009;18(4):885–96. doi: 10.3233/JAD-2009-1196.CrossRefGoogle Scholar
  35. 35.
    Kokaia M, Holmberg K, Nanobashvili A, ZQ X, Kokaia Z, Lendahl U, et al. Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin. Proc Natl Acad Sci U S A. 2001;98(24):14006–11. doi: 10.1073/pnas.231496298. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lerner JT, Sankar R, Mazarati AM. Galanin and epilepsy. Cell Mol Life Sci. 2008;65(12):1864–71. doi: 10.1007/s00018-008-8161-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Paradiso B, Zucchini S, Su T, Bovolenta R, Berto E, Marconi P, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia. 2011;52(3):572–8. doi: 10.1111/j.1528-1167.2010.02930.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Simonato M, Tongiorgi E, Kokaia M. Angels and demons: neurotrophic factors and epilepsy. Trends Pharmacol Sci. 2006;27(12):631–8. doi: 10.1016/ Scholar
  39. 39.
    Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123–31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010;70(5):271–88. doi: 10.1002/dneu.20774.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010;70(5):304–22. doi: 10.1002/dneu.20765.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kuramoto S, Yasuhara T, Agari T, Kondo A, Jing M, Kikuchi Y, et al. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats. Brain Res. 2011;1368:281–9. doi: 10.1016/j.brainres.2010.10.054.CrossRefPubMedGoogle Scholar
  43. 43.
    Koyama R, Ikegaya Y. To BDNF or not to BDNF: that is the epileptic hippocampus. Neuroscientist. 2005;11(4):282–7. doi: 10.1177/1073858405278266.CrossRefPubMedGoogle Scholar
  44. 44.
    Larmet Y, Reibel S, Carnahan J, Nawa H, Marescaux C, Depaulis A. Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat. Neuroreport. 1995;6(14):1937–41.CrossRefPubMedGoogle Scholar
  45. 45.
    Palma E, Torchia G, Limatola C, Trettel F, Arcella A, Cantore G, et al. BDNF modulates GABAA receptors microtransplanted from the human epileptic brain to Xenopus oocytes. Proc Natl Acad Sci U S A. 2005;102(5):1667–72. doi: 10.1073/pnas.0409442102.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3(5):383–94. doi: 10.1038/nrn812.CrossRefPubMedGoogle Scholar
  47. 47.
    Paratcha G, Ledda F, Ibanez CF. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell. 2003;113(7):867–79.CrossRefPubMedGoogle Scholar
  48. 48.
    Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–2.CrossRefPubMedGoogle Scholar
  49. 49.
    Kokaia M, Lindvall O. The GDNF family of neurotrophic factors and epilepsy. New York: Nova Science Publishers; 2005.Google Scholar
  50. 50.
    Tornoe J, Torp M, Jorgensen JR, Emerich DF, Thanos C, Bintz B, et al. Encapsulated cell-based biodelivery of meteorin is neuroprotective in the quinolinic acid rat model of neurodegenerative disease. Restor Neurol Neurosci. 2012;30(3):225–36. doi: 10.3233/RNN-2012-110199.PubMedGoogle Scholar
  51. 51.
    Eriksdotter-Jonhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, et al. Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer's disease. Dement Geriatr Cogn Disord. 2012;33(1):18–28. doi: 10.1159/000336051.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chiara Falcicchia
    • 1
  • Giovanna Paolone
    • 1
  • Michele Simonato
    • 1
    Email author
  1. 1.Medical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations