Advertisement

Stem Cell Therapy for Neurovascular and Traumatic Brain Diseases

  • Marci G. Crowley
  • M. Grant Liska
  • Cesar V. BorlonganEmail author
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Diseases of the neurovascular unit, consisting of the endothelial vasculature and supporting cells, are incredibly prevalent in patients. Two such diseases, stroke and traumatic brain injury (TBI), share major pathological similarities, with acute and chronic pathways leading to neurodegeneration. In particular, the neuroinflammatory aspect of stroke and TBI pathology has been shown to contribute significantly to worsening outcomes. Fortunately, neuroinflammation also offers an accessible therapeutic target. Minimal treatment options currently exist for either disease, but stem cell-based therapies have demonstrated great promise in offering neuroprotection and encouraging neuroregeneration after the initial insult. Stem cells have been shown to mitigate chronic neuroinflammation as well as modulate peripheral inflammation via the spleen. Additionally, stem cells have been demonstrated to preferentially migrate to the spleen when injected after a neurovascular injury. This further validates the notion that stem cells are inflammation-honing “biologics” and confer their neuroprotection in large by ameliorating the global inflammatory response. Current research investigations are focused on understanding these cell death and neural repair processes in an effort to utilize the preclinical findings toward efficient strategies designed to employ stem cell therapies as a treatment for stroke, TBI, and other neurovascular diseases. Here, we provide scientific evidence supporting the use of stem cell therapy for neurovascular diseases through the cells’ robust ability to sequester the inflammatory response associated with the secondary cell death that plagues both stroke and TBI.

Keywords

Stem cells Neurovascular disease Neurovascular unit Ischemic stroke Traumatic brain injury Neurodegeneration Regenerative medicine 

References

  1. 1.
    Starke RM, et al. Developments in neurovascular diseases and treatments. ScientificWorldJournal. 2015;2015:608607.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Adamson J, Beswick A, Ebrahim S. Is stroke the most common cause of disability? J Stroke Cerebrovasc Dis. 2004;13(4):171–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics. 2011;8(3):319–29.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sacco RL, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Reid MW, Velez CS. Discriminating military and civilian traumatic brain injuries. Mol Cell Neurosci. 2015;66(Pt B):123–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Helmick KM, et al. Traumatic brain injury in the US military: epidemiology and key clinical and research programs. Brain Imaging Behav. 2015;9(3):358–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Ellis MJ, et al. Psychiatric outcomes after pediatric sports-related concussion. J Neurosurg Pediatr. 2015;16(6):709–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Morgan CD, et al. Predictors of postconcussion syndrome after sports-related concussion in young athletes: a matched case-control study. J Neurosurg Pediatr. 2015;15(6):589–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Virji-Babul N, et al. Changes in functional brain networks following sports-related concussion in adolescents. J Neurotrauma. 2014;31(23):1914–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Coronado VG, et al. Surveillance for traumatic brain injury-related deaths—United States, 1997-2007. MMWR Surveill Summ. 2011;60(5):1–32.PubMedGoogle Scholar
  11. 11.
    Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40.PubMedCrossRefGoogle Scholar
  12. 12.
    McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13(3):287–300.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tajiri N, et al. A nuclear attack on traumatic brain injury: sequestration of cell death in the nucleus. CNS Neurosci Ther. 2016;22(4):306–15.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lok J, et al. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther. 2015;21(4):304–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–201.PubMedCrossRefGoogle Scholar
  16. 16.
    Nguyen H, et al. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Rev Neurother. 2016;16(8):915–26.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Acosta SA, et al. Alpha-synuclein as a pathological link between chronic traumatic brain injury and Parkinson’s disease. J Cell Physiol. 2015;230(5):1024–32.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kang X, et al. delta-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci. 2009;66(21):3505–16.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15(11):1382–402.PubMedCrossRefGoogle Scholar
  20. 20.
    Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Lozano D, et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat. 2015;11:97–106.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Tajiri N, et al. Suppressed cytokine expression immediatey following traumatic brain injury in neonatal rats indicates an expeditious endogenous anti-inflammatory response. Brain Res. 2014;1559:65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil. 2015;30(6):369–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Hu X, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Shlosberg D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393–403.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease—a double-edged sword. Neuron. 2002;35(3):419–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Griffiths MR, Gasque P, Neal JW. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol. 2009;68(3):217–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Srinivasan K, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–89.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Andrade AF, et al. The pathophysiological mechanisms following traumatic brain injury. Rev Assoc Med Bras (1992). 2009;55(1):75–81.CrossRefGoogle Scholar
  33. 33.
    Abate MG, et al. Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care. 2008;9(3):319–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu HM, et al. Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography. J Neurotrauma. 2013;30(5):352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Heiss WD. The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci. 2012;1268:26–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Ajmo CT Jr, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86(10):2227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Richart CH, Hayashi CY, Hedin M. Phylogenomic analyses resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) despite high levels of gene tree conflict and unequal minority resolution frequencies. Mol Phylogenet Evol. 2016;95:171–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Writing Group, M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.CrossRefGoogle Scholar
  39. 39.
    Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005;18(1):59–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Tang G, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells. 2014;32(12):3150–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Wei ZZ, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402.PubMedCrossRefGoogle Scholar
  42. 42.
    Stone LL, Grande A, Low WC. Neural repair and neuroprotection with stem cells in ischemic stroke. Brain Sci. 2013;3(2):599–614.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gopurappilly R, et al. Stem cells in stroke repair: current success and future prospects. CNS Neurol Disord Drug Targets. 2011;10(6):741–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang W, et al. Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: mechanisms, models, and biomarkers. Mol Neurobiol. 2015;52(3):1572–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Acosta SA, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;9(3):e90953.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lin D, et al. Brain-derived neurotrophic factor signaling pathway: modulation by acupuncture in telomerase knockout mice. Altern Ther Health Med. 2015;21(6):36–46.PubMedGoogle Scholar
  47. 47.
    Siddiq I, et al. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma. 2012;29(17):2647–59.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim HJ, Lee JH, Kim SH. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma. 2010;27(1):131–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Ruscher K, et al. Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J Cereb Blood Flow Metab. 2013;33(8):1225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lanfranconi S, et al. Growth factors in ischemic stroke. J Cell Mol Med. 2011;15(8):1645–87.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim J, et al. Developmental and degenerative modulation of brain-derived neurotrophic factor transcript variants in the mouse hippocampus. Int J Dev Neurosci. 2014;38:68–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Isgor C, et al. Expansion of the dentate mossy fiber-CA3 projection in the brain-derived neurotrophic factor-enriched mouse hippocampus. Neuroscience. 2015;288:10–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Merson TD, Bourne JA. Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol. 2014;56:4–19.PubMedCrossRefGoogle Scholar
  56. 56.
    Liska MG, et al. Implication of biobridge concept in stem cell therapy for ischemic stroke. J Neurosurg Sci. 2016;61:173–9.PubMedGoogle Scholar
  57. 57.
    Tajiri N, et al. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One. 2013;8(9):e74857.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhang Y, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2016; doi: 10.1016/j.neuint.2016.08.003.
  59. 59.
    Hosseini SM, et al. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. Int J Stem Cells. 2015;8(1):99–105.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Liu SJ, et al. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation. 2014;11:66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Barnett SC, Riddell JS. Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat. 2004;204(1):57–67.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fairless R, Barnett SC. Olfactory ensheathing cells: their role in central nervous system repair. Int J Biochem Cell Biol. 2005;37(4):693–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Seyfried DM, et al. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage. Brain Res. 2008;1224:12–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bilen S, et al. Treatment efficacy with bone marrow derived mesenchymal stem cells and minocycline in rats after cerebral ischemic injury. Stem Cell Rev. 2013;9(2):219–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Nudi ET, et al. Combining enriched environment, progesterone, and embryonic neural stem cell therapy improves recovery after brain injury. J Neurotrauma. 2015;32(14):1117–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Ma Z, et al. Effects of umbilical cord mononuclear cells transplantation combined with hyperbaric oxygen therapy on hypoxic-ischemic brain damage in neonatal rats. Zhongguo Dang Dai Er Ke Za Zhi. 2015;17(7):736–40.PubMedGoogle Scholar
  67. 67.
    Geng CK, et al. Effect of mesenchymal stem cells transplantation combining with hyperbaric oxygen therapy on rehabilitation of rat spinal cord injury. Asian Pac J Trop Med. 2015;8(6):468–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Tu Y, et al. Combination of temperature-sensitive stem cells and mild hypothermia: a new potential therapy for severe traumatic brain injury. J Neurotrauma. 2012;29(14):2393–403.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gao S, et al. Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng Part A. 2014;20(7–8):1271–84.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Moshayedi P, et al. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials. 2016;105:145–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Seifert HA, et al. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012;7(4):1017–24.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Acosta SA, et al. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke. 2015;46(9):2616–27.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mohamed IN, et al. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxid Redox Signal. 2015;22(13):1188–206.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis. 2014;5(5):307–26.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Dziedzic T. Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Rev Neurother. 2015;15(5):523–31.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang BJ, et al. Splenectomy protects experimental rats from cerebral damage after stroke due to anti-inflammatory effects. Chin Med J. 2013;126(12):2354–60.PubMedGoogle Scholar
  77. 77.
    Seifert HA, et al. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis. 2012;27(2):131–41.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vendrame M, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.PubMedCrossRefGoogle Scholar
  79. 79.
    Bang OY, et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Diamandis T, Borlongan CV. One, two, three steps toward cell therapy for stroke. Stroke. 2015;46(2):588–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Bhasin A, et al. Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Prasad K, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Suarez-Monteagudo C, et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27(3):151–61.PubMedGoogle Scholar
  84. 84.
    Honmou O, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Banerjee S, et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl Med. 2014;3(11):1322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jeong H, et al. Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells. 2014;7(2):63–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Horner RD, et al. Racial variations in ischemic stroke-related physical and functional impairments. Stroke. 1991;22(12):1497–501.PubMedCrossRefGoogle Scholar
  88. 88.
    Imberti B, Monti M, Casiraghi F. Pluripotent stem cells and tolerance induction in organ transplantation. Curr Opin Organ Transplant. 2015;20(1):86–93.PubMedCrossRefGoogle Scholar
  89. 89.
    Xin H, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–64.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014;8:377.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhang Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chopp M, Zhang ZG. Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin Emerg Drugs. 2015;20(4):523–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ban JJ, et al. Neurogenic effects of cell-free extracts of adipose stem cells. PLoS One. 2016;11(2):e0148691.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cho YJ, et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res. 2012;90(9):1794–802.PubMedCrossRefGoogle Scholar
  95. 95.
    Tsai MJ, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci. 2014;21:5.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Egashira Y, et al. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res. 2012;1461:87–95.PubMedCrossRefGoogle Scholar
  97. 97.
    Doeppner TR, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4(10):1131–43.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kalani A, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol. 2016;79:360–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Dela Pena I, et al. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J Neurosurg Sci. 2014;58(3):145–9.Google Scholar
  100. 100.
    Ribeiro CA, et al. The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther. 2012;3(3):18.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Galindo LT, et al. Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int. 2011;2011:564089.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Blaber SP, et al. Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med. 2012;10:172.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang B, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2(1):111–23.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Derrien T, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Qi JH, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9(4):407–15.PubMedCrossRefGoogle Scholar
  107. 107.
    Yao J, et al. Tissue inhibitor of matrix metalloproteinase-3 or vascular endothelial growth factor transfection of aged human mesenchymal stem cells enhances cell therapy after myocardial infarction. Rejuvenation Res. 2012;15(5):495–506.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Xin H, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jeong, H., et al., Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells, 2014. 7(2): p. 63–9.Google Scholar
  110. 110.
    Horner, R.D., et al., Racial variations in ischemic stroke-related physical and functional impairments. Stroke, 1991. 22(12): p. 1497–501.Google Scholar
  111. 111.
    Imberti, B., M. Monti, and F. Casiraghi, Pluripotent stem cells and tolerance induction in organ transplantation. Curr Opin Organ Transplant, 2015. 20(1): p. 86–93.Google Scholar
  112. 112.
    Xin, H., et al., Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012. 30(7): p. 1556–64.Google Scholar
  113. 113.
    Xin, H., Y. Li, and M. Chopp, Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci, 2014. 8: p. 377.Google Scholar
  114. 114.
    Zhang, Y., et al., Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg, 2015. 122(4): p. 856–67.Google Scholar
  115. 115.
    Chopp, M. and Z.G. Zhang, Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin Emerg Drugs, 2015. 20(4): p. 523–6.Google Scholar
  116. 116.
    Ban, J.J., et al., Neurogenic Effects of Cell-Free Extracts of Adipose Stem Cells. PLoS One, 2016. 11(2): p. e0148691.Google Scholar
  117. 117.
    Cho, Y.J., et al., Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res, 2012. 90(9): p. 1794–802.Google Scholar
  118. 118.
    Tsai, M.J., et al., Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci, 2014. 21: p. 5.Google Scholar
  119. 119.
    Egashira, Y., et al., The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res, 2012. 1461: p. 87–95.Google Scholar
  120. 120.
    Doeppner, T.R., et al., Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med, 2015. 4(10): p. 1131–43.Google Scholar
  121. 121.
    Kalani, A., et al., Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol, 2016. 79: p. 360–369.Google Scholar
  122. 122.
    Dela Pena, I., et al., Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J Neurosurg Sci, 2014. 58(3): p. 145–9.Google Scholar
  123. 123.
    Ribeiro, C.A., et al., The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther, 2012. 3(3): p. 18.Google Scholar
  124. 124.
    Galindo, L.T., et al., Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int, 2011. 2011: p. 564089.Google Scholar
  125. 125.
    Blaber, S.P., et al., Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med, 2012. 10: p. 172.Google Scholar
  126. 126.
    Wapinski, O. and H.Y. Chang, Long noncoding RNAs and human disease. Trends Cell Biol, 2011. 21(6): p. 354–61.Google Scholar
  127. 127.
    Zhang, B., et al., The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cisregulatory role in the adult. Cell Rep, 2012. 2(1): p. 111–23.Google Scholar
  128. 128.
    Derrien, T., et al., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 2012. 22(9): p. 1775–89.Google Scholar
  129. 129.
    Qi, J.H., et al., A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med, 2003. 9(4): p. 407–15.Google Scholar
  130. 130.
    Yao, J., et al., Tissue inhibitor of matrix metalloproteinase-3 or vascular endothelial growth factor transfection of aged human mesenchymal stem cells enhances cell therapy after myocardial infarction. Rejuvenation Res, 2012. 15(5): p. 495–506.Google Scholar
  131. 131.
    Xin, H., et al., MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 2013. 31(12): p. 2737–46.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marci G. Crowley
    • 1
  • M. Grant Liska
    • 1
  • Cesar V. Borlongan
    • 1
    Email author
  1. 1.Department of Neurosurgery and Brain RepairUniversity of South Florida College of MedicineTampaUSA

Personalised recommendations