Considerations for Successful Encapsulated β-Cell Therapy

  • Christopher G. ThanosEmail author
  • Jason L. Gaglia
  • Felicia W. Pagliuca
Part of the Molecular and Translational Medicine book series (MOLEMED)


Encapsulated beta cell therapy for the treatment of type 1 diabetes remains at the forefront of biomaterials research. With recent success in generating glucoresponsive stem cell-derived β-cells, there is a renewed sense of promise in the field driven by the quality and quantity of available cell sources. Several strategies are in development that address the failure modes associated with encapsulation including hypoxia within the encapsulated biomass, foreign body response against the materials that make up the encapsulation device, poor or declining insulin flux, and membrane selectivity against elements of the immune system. This review chapter highlights some of the key innovations in each of these areas of beta cell encapsulation and provides context as stem cell strategies advance to the clinic.


Macrodevice Encapsulation Membrane Islet β-cell Stem cell Diabetes Immunoprotection Inflammation Biomaterials 


  1. 1.
    Fullerton B, Jeitler K, Seitz M, Horvath K, Berghold A, Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev 2014;(2):CD009122.
  2. 2.
    Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care. 2003;26(6):1902–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Cryer PE. Hierarchy of physiological responses to hypoglycemia: relevance to clinical hypoglycemia in type I (insulin dependent) diabetes mellitus. Horm Metab Res. 1997;29(3):92–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Diedrich L, Sandoval D, Davis SN. Hypoglycemia associated autonomic failure. Clin Auton Res. 2002;12(5):358–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Gabriely I, Shamoon H. Hypoglycemia in diabetes: common, often unrecognized. Cleve Clin J Med. 2004;71(4):335–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Pai CM, Bae YH, Mack EJ, Wilson DE, Kim SW. Concanavalin A microspheres for a self-regulating insulin delivery system. J Pharm Sci. 1992;81(6):532–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernkop-Schnurch A, Krauland A, Valenta C. Development and in vitro evaluation of a drug delivery system based on chitosan-EDTA BBI conjugate. J Drug Target. 1998;6(3):207–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Shah D, Shen WC. Transcellular delivery of an insulin-transferrin conjugate in enterocyte-like Caco-2 cells. J Pharm Sci. 1996;85(12):1306–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014;371:313–25.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ricordi C. Completion of the first FDA phase III multicenter trial of islet transplantation in type 1 diabetes by the NIH CIT consortium severe hypoglycemia (hypo) and hypo unawareness. ISCT 2014, Paris.Google Scholar
  11. 11.
    Song SH, Kjems L, Ritzel R, McIntyre SM, Johnson ML, Veldhuis JD, et al. Pulsatile insulin secretion by human pancreatic islets. J Clin Endocrinol Metab. 2002;87:213–21.PubMedCrossRefGoogle Scholar
  12. 12.
    FDA Approves MiniMed 670G System—World’s First Hybrid Closed Loop System [press release].
  13. 13.
    Administration FaD. Summary of safety and effectiveness data.
  14. 14.
    Heinemann L, Fleming GA, Petrie JR, Holl RW, Bergenstal RM, Peters AL. Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care. 2015;38(4):716–22.PubMedGoogle Scholar
  15. 15.
    Ellingsen C, Dassau E, Zisser H, Grosman B, Percival MW, Jovanovic L, et al. Safety constraints in an artificial pancreatic beta cell: an implementation of model predictive control with insulin on board. J Diabetes Sci Technol. 2009;3(3):536–44.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kedia N. Treatment of severe diabetic hypoglycemia with glucagon: an underutilized therapeutic approach. Diabetes Metab Syndr Obes. 2011;4:337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    McCall AL, Farhy LS. Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control. Minerva Endocrinol. 2013;38(2):145–63.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012;35(7):1436–45.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ricordi C, Goldstein JS, Balamurugan AN, Szot GL, Kin T, Liu C, et al. NIH-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes. 2016;65(11):3418–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R, et al. Current status of clinical islet transplantation. Transplantation. 2005;79(10):1289–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Rickels MR, Liu C, Shlansky-Goldberg RD, Soleimanpour SA, Vivek K, Kamoun M, et al. Improvement in beta-cell secretory capacity after human islet transplantation according to the CIT07 protocol. Diabetes. 2013;62(8):2890–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Froud T, Baidal DA, Ponte G, Ferreira JV, Ricordi C, Alejandro R. Resolution of neurotoxicity and beta-cell toxicity in an islet transplant recipient following substitution of tacrolimus with MMF. Cell Transplant. 2006;15(7):613–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Administration FaD. Rapamune (Sirolimus) oral solution and tablets.
  25. 25.
    Weir GC, Bonner-Weir S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest. 1990;85(4):983–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Farmer TD, Jenkins EC, O'Brien TP, McCoy GA, Havlik AE, Nass ER, et al. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp. Am J Physiol Endocrinol Metab. 2015;308(3):E206–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Oliver JB, Beidas AK, Bongu A, Brown L, Shapiro ME. A comparison of long-term outcomes of portal versus systemic venous drainage in pancreatic transplantation: a systematic review and meta-analysis. Clin Transpl. 2015;29(10):882–92.CrossRefGoogle Scholar
  28. 28.
    Lifson N, Kramlinger KG, Mayrand RR, Lender EJ. Blood flow to the rabbit pancreas with special reference to the islets of langerhans. Gastroenterology. 1980;79(3):466–73.PubMedGoogle Scholar
  29. 29.
    Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, et al. Pancreatic islet production of vascular endothelial growth factor—a is essential for islet vascularization, revascularization, and function. Diabetes. 2006;55(11):2974–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Andersson A, Korsgren O, Jansson L. Intraportally transplanted pancreatic islets revascularized from hepatic arterial system. Diabetes. 1989;38(Suppl 1):192–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Lau J, Jansson L, Carlsson PO. Islets transplanted intraportally into the liver are stimulated to insulin and glucagon release exclusively through the hepatic artery. Am J Transplant. 2006;6(5 Pt 1):967–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Henriksnas J, Lau J, Zang G, Berggren PO, Kohler M, Carlsson PO. Markedly decreased blood perfusion of pancreatic islets transplanted intraportally into the liver: disruption of islet integrity necessary for islet revascularization. Diabetes. 2012;61(3):665–73.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim HI, JE Y, Park CG, Kim SJ. Comparison of four pancreatic islet implantation sites. J Korean Med Sci. 2010;25(2):203–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AM. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol. 1985;70(3):347–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Olsson R, Carlsson PO. The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem Cell Biol. 2006;38(4):492–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, et al. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol. 2003;13(12):1070–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Toyofuku Y, Uchida T, Nakayama S, Hirose T, Kawamori R, Fujitani Y, et al. Normal islet vascularization is dispensable for expansion of beta-cell mass in response to high-fat diet induced insulin resistance. Biochem Biophys Res Commun. 2009;383(3):303–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Buchwald P. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theor Biol Med Model. 2009;6:5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Balaji S, Mcquilling JP, Khanna O, Brey EM, Opara EC. Chpt 14: Vascularization of encapsulated cells. New York: CRC Press; 2012. p. 283–300.Google Scholar
  41. 41.
    Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A. 2014;111:10514–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yamamoto T, Ricordi C, Messinger S, Sakuma Y, Miki A, Rodriguez R, et al. Deterioration and variability of highly purified collagenase blends used in clinical islet isolation. Transplantation. 2007;84(8):997–1002.PubMedCrossRefGoogle Scholar
  43. 43.
    Brandhorst H, Brandhorst D, Hering BJ, Federlin K, Bretzel RG. Body mass index of pancreatic donors: a decisive factor for human islet isolation. Exp Clin Endocrinol Diabetes. 1995;103(Suppl 2):23–6.PubMedGoogle Scholar
  44. 44.
    Wang Y, Danielson KK, Ropski A, Harvat T, Barbaro B, Paushter D, et al. Systematic analysis of donor and isolation factor’s impact on human islet yield and size distribution. Cell Transplant. 2013;22(12):2323–33.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chen W, Lisowski M, Khalil G, Sweet IR, Shen AQ. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets. PLoS One. 2012;7(3):e33070.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25(26):5681–703.PubMedCrossRefGoogle Scholar
  47. 47.
    Fischer M, Sperling C, Tengvall P, Werner C. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression. Biomaterials. 2010;31(9):2498–507.PubMedCrossRefGoogle Scholar
  48. 48.
    Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.PubMedCrossRefGoogle Scholar
  49. 49.
    Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials. 2015;56:187–97.PubMedCrossRefGoogle Scholar
  50. 50.
    Deonarine K, Panelli MC, Stashower ME, Jin P, Smith K, Slade HB, et al. Gene expression profiling of cutaneous wound healing. J Transl Med. 2007;5:11.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fukano Y, Usui ML, Underwood RA, Isenhath S, Marshall AJ, Hauch KD, et al. Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res A. 2010;94(4):1172–86.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A. 2010;107(34):15211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, et al. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules. 2011;12:1900–11.PubMedCrossRefGoogle Scholar
  54. 54.
    Paul NE, Skazik C, Harwardt M, Bartneck M, Denecke B, Klee D, et al. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials. 2008;29:4056–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Kanak MA, Takita M, Kunnathodi F, Lawrence MC, Levy MF, Naziruddin B. Inflammatory response in islet transplantation. Int J Endocrinol. 2014;2014:451035.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hume PS, Anseth KS. Polymerizable superoxide dismutase mimetic protects cells encapsulated in poly(ethylene glycol) hydrogels from reactive oxygen species-mediated damage. J Biomed Mater Res A. 2011;99(1):29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chen T, Yuan J, Duncanson S, Hibert ML, Kodish BC, Mylavaganam G, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am J Transplant. 2015;15:618–27.PubMedCrossRefGoogle Scholar
  58. 58.
    Helton KL, Ratner BD, Wisniewski NA. Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and foreign body response-part II: examples and application. J Diabetes Sci Technol. 2011;5(3):647–56.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zeman LJ, Zydney AL. Microfiltration and ultrafiltration: principles and applications. New York: M. Dekker; 1996. xix, 618 pGoogle Scholar
  60. 60.
    Gray DW. An overview of the immune system with specific reference to membrane encapsulation and islet transplantation. Ann N Y Acad Sci. 2001;944:226–39.PubMedCrossRefGoogle Scholar
  61. 61.
    Iwata H, Morikawa N, Fujii T, Takagi T, Samejima T, Ikada Y. Does immunoisolation need to prevent the passage of antibodies and complements? Transplant Proc. 1995;27(6):3224–6.PubMedGoogle Scholar
  62. 62.
    Perkins SJ. Molecular modelling of human complement subcomponent C1q and its complex with C1r2C1s2 derived from neutron-scattering curves and hydrodynamic properties. Biochem J. 1985;228(1):13–26.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Silverton EW, Navia MA, Davies DR. Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A. 1977;74(11):5140–4.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Krishnan L, Clayton LR, Boland ED, Reed RM, Hoying JB, Williams SK. Cellular immunoisolation for islet transplantation by a novel dual porosity electrospun membrane. Transplant Proc. 2011;43(9):3256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    RF, PP, Inventors. Gen Electric, assignee. Process for making cylindrical holes in a sheet material. USA; 1974.Google Scholar
  66. 66.
    Calvo JI, Hernández A, Prádanos P, Martibnez L, Bowen WR. Pore size distributions in microporous membranes: II. Bulk characterization of track-etched filters by air porometry and mercury porosimetry. J Colloid Interface Sci 1995;(176):467–78.Google Scholar
  67. 67.
    Song S, Faleo G, Yeung R, Kant R, Posselt AM, Desai TA, et al. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. Sci Rep. 2016;6:23679.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Desai TA, Hansford DJ, Leoni L, Essenpreis M, Ferrari M. Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens Bioelectron. 2000;15(9–10):453–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Nyitray CE, Chang R, Faleo G, Lance KD, Bernards DA, Tang Q, et al. Polycaprolactone thin-film micro- and nanoporous cell-encapsulation devices. ACS Nano. 2015;9(6):5675–82.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Neufeld T, Ludwig B, Barkai U, Weir GC, Colton CK, Evron Y, et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One. 2013;8(8):e70150.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lavin DM, Bintz BE, Thanos CG. The diffusive properties of hydrogel microcapsules for cell encapsulation. Methods Mol Biol. 2017;1479:119–34.PubMedCrossRefGoogle Scholar
  72. 72.
    Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK, et al. Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation. 2001;71(2):203–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Martinsen a SI, Skjårk-Braek G. Alginate as immobilization material: III. Diffusional properties. Biotechnol Bioeng. 1992;39:186–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, et al. Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes. 2010;59(5):1202–10.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev. 2014;67-68:93–110.PubMedCrossRefGoogle Scholar
  76. 76.
    Papas KK, Avgoustiniatos ES, Suszynski TM. Effect of oxygen supply on the size of implantable islet-containing encapsulation devices. Panminerva Med. 2016;58(1):72–7.PubMedGoogle Scholar
  77. 77.
    Dionne KE, Colton CK, Yarmush ML. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes. 1993;42(1):12–21.PubMedCrossRefGoogle Scholar
  78. 78.
    Pisania A, Weir GC, O’Neil JJ, Omer A, Tchipashvili V, Lei J, et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Investig. 2010;90(11):1661–75.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Araki J, Kato H, Doi K, Kuno S, Kinoshita K, Mineda K, et al. Application of normobaric hyperoxygenation to an ischemic flap and a composite skin graft. Plast Reconstr Surg Glob Open. 2014;2:e152.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: more than a membrane story. World J Transplant. 2016;6(1):69–90.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Papas KK, Bellin MD, Sutherland DER, Suszynski TM, Kitzmann JP, Avgoustiniatos ES, et al. Islet oxygen consumption rate (OCR) dose predicts insulin independence in clinical islet autotransplantation. PLoS One. 2015;10(8):e0134428.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Papas KK, Colton CK, Nelson RA, Rozak PR, Avgoustiniatos ES, Scott WE 3rd, et al. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice. Am J Transplant. 2007;7(3):707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Papas KK, Colton CK, Qipo A, Wu H, Nelson RA, Hering BJ, et al. Prediction of marginal mass required for successful islet transplantation. J Investig Surg. 2010;23(1):28–34.CrossRefGoogle Scholar
  84. 84.
    Gilbert M, Jung SR, Reed BJ, Sweet IR. Islet oxygen consumption and insulin secretion tightly coupled to calcium derived from L-type calcium channels but not from the endoplasmic reticulum. J Biol Chem. 2008;283(36):24334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jackson R, Togtema M, Lambert PF, Zehbe I. Tumourigenesis driven by the human papillomavirus type 16 Asian-American e6 variant in a three-dimensional keratinocyte model. PLoS One. 2014;9(7):e101540.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A. 2013;110:1–5.CrossRefGoogle Scholar
  87. 87.
    Dolgin E. Diabetes: encapsulating the problem. Nature. 2016;540(7632):S60–2.PubMedCrossRefGoogle Scholar
  88. 88.
    Nose Y. Oxygen-carrying macromolecules: therapeutic agents for the treatment of hypoxia. Artif Organs. 1998;22(7):618–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Farrar D, Grocott M. Intravenous artificial oxygen carriers. Hosp Med. 2003;64(6):352–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Johnson AS, O’Sullivan E, D’Aoust LN, Omer A, Bonner-Weir S, Fisher RJ, et al. Quantitative assessment of islets of Langerhans encapsulated in alginate. Tissue Eng Part C Methods. 2011;17(4):435–49.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gattas-Asfura KM, Fraker CA, Stabler CL. Perfluorinated alginate for cellular encapsulation. J Biomed Mater Res A. 2012;100(8):1963–71.PubMedCrossRefGoogle Scholar
  92. 92.
    Cassidy DP, Irvine RL. Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. J Hazard Mater. 1999;69(1):25–39.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang J, Zhu Y, Bawa HK, Ng G, Wu Y, Libera M, et al. Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl Mater Interfaces. 2011;3(1):67–73.PubMedCrossRefGoogle Scholar
  94. 94.
    SH O, Ward CL, Atala A, Yoo JJ, Harrison BS. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials. 2009;30(5):757–62.CrossRefGoogle Scholar
  95. 95.
    Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A. 2012;109(11):4245–50.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    McQuilling JP, Opara EC. Methods for incorporating oxygen-generating biomaterials into cell culture and microcapsule systems. Methods Mol Biol. 2017;1479:135–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Montazeri L, Hojjati-Emami S, Bonakdar S, Tahamtani Y, Hajizadeh-Saffar E, Noori-Keshtkar M, et al. Improvement of islet engrafts by enhanced angiogenesis and microparticle-mediated oxygenation. Biomaterials. 2016;89:157–65.PubMedCrossRefGoogle Scholar
  98. 98.
    Duling BR, Berne RM. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res. 1970;27(5):669–78.PubMedCrossRefGoogle Scholar
  99. 99.
    Pittman RN. Regulation of tissue oxygenation. Integrated systems physiology: from molecule to function to disease. San Rafael, CA: Morgan & Claypool Life Sciences; 2011.Google Scholar
  100. 100.
    Geller RL, Loudovaris T, Neuenfeldt S, Johnson RC, Brauker JH. Use of an immunoisolation device for cell transplantation and tumor immunotherapy. Ann N Y Acad Sci. 1997;831:438–51.PubMedCrossRefGoogle Scholar
  101. 101.
    Rafael E, Wernerson A, Arner P, Tibell A. In vivo studies on insulin permeability of an immunoisolation device intended for islet transplantation using the microdialysis technique. Eur Surg Res. 1999;31(3):249–58.PubMedCrossRefGoogle Scholar
  102. 102.
    Rafael E, Wernerson A, Arner P, Wu GS, Tibell A. In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: a novel application of the microdialysis technique. Cell Transplant. 1999;8(3):317–26.PubMedCrossRefGoogle Scholar
  103. 103.
    Rafael E, Gazelius B, Wu GS, Tibell A. Longitudinal studies on the microcirculation around the TheraCyte immunoisolation device, using the laser Doppler technique. Cell Transplant. 2000;9(1):107–13.PubMedCrossRefGoogle Scholar
  104. 104.
    Rafael E, Wu GS, Hultenby K, Tibell A, Wernerson A. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant. 2003;12(4):407–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Sorenby AK, Kumagai-Braesch M, Sharma A, Hultenby KR, Wernerson AM, Tibell AB. Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation: studies in a rodent model. Transplantation. 2008;86(2):364–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdés-González RA, et al. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81:1318–24.PubMedCrossRefGoogle Scholar
  107. 107.
    Pepper AR, Dinyari P, Malcolm AJ, Kin T, Pawlick LR, Senior PA. Subcutaneous clinical islet transplantation in a prevascularized subcutaneous pouch—preliminary experience. CellR4. 2016;4:1–10.Google Scholar
  108. 108.
    Pepper AR, Pawlick R, Bruni A, Gala-Lopez B, Wink J, Rafiei Y, et al. Harnessing the foreign body reaction in marginal mass device-less subcutaneous islet transplantation in mice. Transplantation. 2016;100(7):1474–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.PubMedCrossRefGoogle Scholar
  110. 110.
    Tibell A, Rafael E, Wennberg L, Nordenstrom J, Bergstrom M, Geller RL, et al. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant. 2001;10(7):591–9.PubMedGoogle Scholar
  111. 111.
    Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;14:643–51.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH, Bratlie K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34(3):345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Vegas AJ, Veiseh O, Gürtler M, Millman JR, Pagliuca FW, Bader AR, et al. Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nat Med. 2016;22(3):306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kozlovskaya V, Xue B, Lei W, Padgett LE, Tse HM, Kharlampieva E. Hydrogen-bonded multilayers of tannic acid as mediators of T-cell immunity. Adv Healthc Mater. 2015;4(5):686–94.PubMedCrossRefGoogle Scholar
  115. 115.
    Cordoba A, Satue M, Gomez-Florit M, Hierro-Oliva M, Petzold C, Lyngstadaas SP, et al. Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Adv Healthc Mater. 2015;4(4):540–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Wang W, Lu Y, Xie J, Zhu H, Cao Z. A zwitterionic macro-crosslinker for durable non-fouling coatings. Chem Commun (Camb). 2016;52(25):4671–4.CrossRefGoogle Scholar
  117. 117.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Kim SK, Hebrok M, Li E, Oh SP, Schrewe H, Harmon EB, et al. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000;14(15):1866–71.PubMedPubMedCentralGoogle Scholar
  119. 119.
    D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41.PubMedCrossRefGoogle Scholar
  120. 120.
    Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 1998;12(11):1705–13.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.PubMedCrossRefGoogle Scholar
  122. 122.
    Viacyte. A safety, tolerability, and efficacy study of VC-01™ combination product in subjects with type I diabetes mellitus
  123. 123.
    McCracken KW, Wells JM. Molecular pathways controlling pancreas induction. Semin Cell Dev Biol. 2012;23(6):656–62.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic? Cells in vitro. Cell. 2014;159:428–39.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33.PubMedCrossRefGoogle Scholar
  126. 126.
    Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–72.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  128. 128.
    Alper J. Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol. 2009;27(3):213–4.PubMedCrossRefGoogle Scholar
  129. 129.
    Cyranoski D. Japanese woman is first recipient of next-generation stem cells. Nature. 2014; doi: 10.1038/nature.2017.21730.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christopher G. Thanos
    • 1
    Email author
  • Jason L. Gaglia
    • 2
  • Felicia W. Pagliuca
    • 3
  1. 1.VP Delivery R&D, Semma TherapeuticsProvidenceUSA
  2. 2.Section on ImmunobiologyJoslin Diabetes CenterBostonUSA
  3. 3.VP Cell Biology R&D, Semma TherapeuticsCambridgeUSA

Personalised recommendations