Advertisement

Cell Therapy pp 297-317 | Cite as

Stem Cell Therapy in Duchenne Muscular Dystrophy

  • Mirella Meregalli
  • Marzia Belicchi
  • Yvan TorrenteEmail author
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Here, we will describe the therapeutic potential of stem cell in the treatment of Duchenne muscular dystrophy (DMD). Moreover, we will examine pros and cons in the use of stem cells in clinical trials and the set of problems linked to the fine-tuning of protocols finalized to the generation of large numbers of transplantable cells. We will describe the experimental studies focused on the analysis of survival and functional efficacy of the grafted cells and the possible onset of adverse effects, such as immune rejection and tumor formation.

Keywords

Duchenne muscular dystrophy DMD Stem cells Cell therapy Clinical trials 

Notes

Acknowledgments

This work was supported by Associazione Gli Amici di Emanuele—Fondo DMD Onlus, Associazione Amici del Centro Dino Ferrari, s.r.l.

Conflict of Interest Statement

The authors declare that no commercial or financial conflict of interests no longer exist.

References

  1. 1.
    Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531. PubMed PMID: 22013216.CrossRefPubMedGoogle Scholar
  2. 2.
    Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. 2006;75:19–37. PubMed PMID: 16756483.CrossRefPubMedGoogle Scholar
  3. 3.
    Pette D, Staron RS. Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol. 2001;115(5):359–72. PubMed PMID: 11449884.PubMedGoogle Scholar
  4. 4.
    Qaisar R, Renaud G, Hedstrom Y, Pollanen E, Ronkainen P, Kaprio J, et al. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol. 2013;591(9):2333–44. PubMed PMID: 23459759. Pubmed Central PMCID: 3650698.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Metaxas TI, Mandroukas A, Vamvakoudis E, Kotoglou K, Ekblom B, Mandroukas K. Muscle fiber characteristics, satellite cells and soccer performance in young athletes. J Sports Sci Med. 2014;13(3):493–501. PubMed PMID: 25177173. Pubmed Central PMCID: 4126283.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Castro MJ, Apple DF Jr, Hillegass EA, Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol. 1999;80(4):373–8. PubMed PMID: 10483809.CrossRefPubMedGoogle Scholar
  7. 7.
    Tajsharghi H. Thick and thin filament gene mutations in striated muscle diseases. Int J Mol Sci. 2008;9(7):1259–75. PubMed PMID: 19325803. Pubmed Central PMCID: 2635722.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    de la Serrana DG, Estevez A, Andree K, Johnston IA. Fast skeletal muscle transcriptome of the gilthead sea bream (Sparus aurata) determined by next generation sequencing. BMC Genomics. 2012;13:181. PubMed PMID: 22577894. Pubmed Central PMCID: 3418159.CrossRefGoogle Scholar
  9. 9.
    Ma J, Wang H, Liu R, Jin L, Tang Q, Wang X, et al. The miRNA Transcriptome directly reflects the physiological and biochemical differences between red, white, and intermediate muscle fiber types. Int J Mol Sci. 2015;16(5):9635–53. PubMed PMID: 25938964. Pubmed Central PMCID: 4463610.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhu J, Shi X, Lu H, Xia B, Li Y, Li X, et al. RNA-seq transcriptome analysis of extensor digitorum longus and soleus muscles in large white pigs. Mol Genet Genomics. 2016;291(2):687–701. PubMed PMID: 26520103.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu Y, Li M, Ma J, Zhang J, Zhou C, Wang T, et al. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol Biol. 2013;14:7. PubMed PMID: 23419046. Pubmed Central PMCID: 3599761.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Muroya S, Taniguchi M, Shibata M, Oe M, Ojima K, Nakajima I, et al. Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast- and slow-type muscles by massively parallel sequencing. J Anim Sci. 2013;91(1):90–103. PubMed PMID: 23100578.CrossRefPubMedGoogle Scholar
  13. 13.
    McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, et al. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A. 2004;101(29):10590–5. PubMed PMID: 15247427. Pubmed Central PMCID: 489979 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature. 1996;383(6603):837–40. PubMed PMID: 8893011.CrossRefPubMedGoogle Scholar
  15. 15.
    Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386(6627):855–8. PubMed PMID: 9126747.CrossRefPubMedGoogle Scholar
  16. 16.
    Westerblad H, Allen DG. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol. 1991;98(3):615–35. PubMed PMID: 1761971. Pubmed Central PMCID: 2229059.CrossRefPubMedGoogle Scholar
  17. 17.
    Williams P, Watt P, Bicik V, Goldspink G. Effect of stretch combined with electrical stimulation on the type of sarcomeres produced at the ends of muscle fibers. Exp Neurol. 1986;93(3):500–9. PubMed PMID: 3743696.CrossRefPubMedGoogle Scholar
  18. 18.
    Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG. Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol. 2005;562(Pt 2):367–80. PubMed PMID: 15528244. Pubmed Central PMCID: 1665499.CrossRefPubMedGoogle Scholar
  19. 19.
    Webster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988;52(4):503–13. PubMed PMID: 3342447.CrossRefPubMedGoogle Scholar
  20. 20.
    Marini JF, Pons F, Leger J, Loffreda N, Anoal M, Chevallay M, et al. Expression of myosin heavy chain isoforms in Duchenne muscular dystrophy patients and carriers. Neuromuscul Disord. 1991;1(6):397–409. PubMed PMID: 1822352.CrossRefPubMedGoogle Scholar
  21. 21.
    Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143(4):658–69. PubMed PMID: 26884398.CrossRefPubMedGoogle Scholar
  22. 22.
    Emery AE. The muscular dystrophies. Lancet. 2002;359(9307):687–95. PubMed PMID: 11879882.CrossRefPubMedGoogle Scholar
  23. 23.
    Ray PN, Belfall B, Duff C, Logan C, Kean V, Thompson MW, et al. Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy. Nature. 1985;318(6047):672–5. PubMed PMID: 3001530.CrossRefPubMedGoogle Scholar
  24. 24.
    Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2(12):731–40. PubMed PMID: 14636778.CrossRefPubMedGoogle Scholar
  25. 25.
    Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M, et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest. 2004;114(11):1577–85. PubMed PMID: 15578090.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–28. PubMed PMID: 3319190.CrossRefPubMedGoogle Scholar
  27. 27.
    Gawlik KI, Holmberg J, Durbeej M. Loss of dystrophin and beta-sarcoglycan significantly exacerbates the phenotype of laminin alpha2 chain-deficient animals. Am J Pathol. 2014;184(3):740–52. PubMed PMID: 24393714.CrossRefPubMedGoogle Scholar
  28. 28.
    Bertorini TE, Bhattacharya SK, Palmieri GM, Chesney CM, Pifer D, Baker B. Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology. 1982;32(10):1088–92. PubMed PMID: 6889695.CrossRefPubMedGoogle Scholar
  29. 29.
    Jackson MJ, Jones DA, Edwards RH. Measurements of calcium and other elements in muscle biopsy samples from patients with Duchenne muscular dystrophy. Clin Chim Acta. 1985;147(3):215–21. PubMed PMID: 3995772.CrossRefPubMedGoogle Scholar
  30. 30.
    Lund TC, Grange RW, Lowe DA. Telomere shortening in diaphragm and tibialis anterior muscles of aged mdx mice. Muscle Nerve. 2007;36(3):387–90. PubMed PMID: 17617801.CrossRefPubMedGoogle Scholar
  31. 31.
    Fenichel GM, Mendell JR, Moxley RT 3rd, Griggs RC, Brooke MH, Miller JP, et al. A comparison of daily and alternate-day prednisone therapy in the treatment of Duchenne muscular dystrophy. Arch Neurol. 1991;48(6):575–9. PubMed PMID: 2039377.CrossRefPubMedGoogle Scholar
  32. 32.
    Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, et al. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev. 2014;20(5):403–36. PubMed PMID: 24320971. Pubmed Central PMCID: 4193686.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fishman JM, Tyraskis A, Maghsoudlou P, Urbani L, Totonelli G, Birchall MA, et al. Skeletal muscle tissue engineering: which cell to use? Tissue Eng Part B Rev. 2013;19(6):503–15. PubMed PMID: 23679017.CrossRefPubMedGoogle Scholar
  34. 34.
    Bertoni C. Clinical approaches in the treatment of Duchenne muscular dystrophy (DMD) using oligonucleotides. Front Biosci. 2008;13:517–27. PubMed PMID: 17981565.CrossRefPubMedGoogle Scholar
  35. 35.
    Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007;15(5):867–77. PubMed PMID: 17387336.CrossRefPubMedGoogle Scholar
  36. 36.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. PubMed PMID: 16904174.CrossRefPubMedGoogle Scholar
  37. 37.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987;50(3):509–17. PubMed PMID: 3607877.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998;20(1):31–6. PubMed PMID: 9731526.CrossRefPubMedGoogle Scholar
  39. 39.
    Feng Z, Gao F. Stem cell challenges in the treatment of neurodegenerative disease. CNS Neurosci Ther. 2012;18(2):142–8. PubMed PMID: 22070610.CrossRefPubMedGoogle Scholar
  40. 40.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309(5743):2064–7. PubMed PMID: 16141372.CrossRefPubMedGoogle Scholar
  41. 41.
    Galvez BG, Sampaolesi M, Brunelli S, Covarello D, Gavina M, Rossi B, et al. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol. 2006;174(2):231–43. PubMed PMID: 16831885.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Galvez BG, Covarello D, Tolorenzi R, Brunelli S, Dellavalle A, Crippa S, et al. Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency. Cardiovasc Res. 2009;83(4):707–16. PubMed PMID: 19457891.CrossRefPubMedGoogle Scholar
  43. 43.
    Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, et al. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med. 2015;7(12):1513–28. PubMed PMID: 26543057. Pubmed Central PMCID: 4693504.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12. PubMed PMID: 9389720.PubMedGoogle Scholar
  45. 45.
    Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res. 2005;319(1):15–26. PubMed PMID: 15558321.CrossRefPubMedGoogle Scholar
  46. 46.
    Ribatti D. The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med. 2004;8(3):294–300. PubMed PMID: 15491505.CrossRefPubMedGoogle Scholar
  47. 47.
    Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest. 2004;114(2):182–95. PubMed PMID: 15254585.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Limsuwan A, Pienvichit P, Limpijankit T, Khowsathit P, Hongeng S, Pornkul R, et al. Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: first pediatric experience. Clin Cardiol. 2010;33(8):E7–12. PubMed PMID: 20632394.CrossRefPubMedGoogle Scholar
  49. 49.
    Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F, et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant. 2007;16(6):563–77. PubMed PMID: 17912948.CrossRefPubMedGoogle Scholar
  50. 50.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. PubMed PMID: 10102814.CrossRefPubMedGoogle Scholar
  51. 51.
    Rosada C, Justesen J, Melsvik D, Ebbesen P, Kassem M. The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int. 2003;72(2):135–42. PubMed PMID: 12457262.CrossRefPubMedGoogle Scholar
  52. 52.
    Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6(6):543–53. PubMed PMID: 15770794.CrossRefPubMedGoogle Scholar
  53. 53.
    Siepe M, Thomsen AR, Duerkopp N, Krause U, Forster K, Hezel P, et al. Human neonatal thymus-derived mesenchymal stromal cells: characterization, differentiation, and immunomodulatory properties. Tissue Eng Part A. 2009;15(7):1787–96. PubMed PMID: 19132892.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787–98. PubMed PMID: 19923445.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 2007;25(9):1025–34. PubMed PMID: 17767154.CrossRefPubMedGoogle Scholar
  56. 56.
    Nesti LJ, Jackson WM, Shanti RM, Koehler SM, Aragon AB, Bailey JR, et al. Differentiation potential of multipotent progenitor cells derived from war-traumatized muscle tissue. J Bone Joint Surg Am. 2008;90(11):2390–8. PubMed PMID: 18978407.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. PubMed PMID: 16923606.CrossRefPubMedGoogle Scholar
  58. 58.
    Rafei M, Birman E, Forner K, Galipeau J. Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Mol Ther. 2009;17(10):1799–803. PubMed PMID: 19602999.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149(2):353–63. PubMed PMID: 17521318.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vieira NM, Brandalise V, Zucconi E, Jazedje T, Secco M, Nunes VA, et al. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell. 2008;100(4):231–41. PubMed PMID: 17997718.CrossRefPubMedGoogle Scholar
  61. 61.
    Jackson WM, Nesti LJ, Tuan RS. Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert Opin Biol Ther. 2010;10(4):505–17. PubMed PMID: 20218920.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kim YS, Park HJ, Hong MH, Kang PM, Morgan JP, Jeong MH, et al. TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Front Biosci. 2009;14:2845–56. PubMed PMID: 19273239.CrossRefGoogle Scholar
  63. 63.
    Qi CM, Ma GS, Liu NF, Shen CX, Chen Z, Liu XJ, et al. Identification and differentiation of magnetically labeled mesenchymal stem cells in vivo in swines with myocardial infarction. Int J Cardiol. 2009;131(3):417–9. PubMed PMID: 18055034.CrossRefPubMedGoogle Scholar
  64. 64.
    Chung DJ, Choi CB, Lee SH, Kang EH, Lee JH, Hwang SH, et al. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res. 2009;87(16):3554–67. PubMed PMID: 19642203.CrossRefPubMedGoogle Scholar
  65. 65.
    Qian H, Yang H, Xu W, Yan Y, Chen Q, Zhu W, et al. Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int J Mol Med. 2008;22(3):325–32. PubMed PMID: 18698491.PubMedGoogle Scholar
  66. 66.
    Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–52. PubMed PMID: 15891110.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94. PubMed PMID: 7876320.CrossRefPubMedGoogle Scholar
  68. 68.
    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49. PubMed PMID: 17656645.CrossRefPubMedGoogle Scholar
  69. 69.
    Devine SM. Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl. 2002;38:73–9. PubMed PMID: 12046853.CrossRefPubMedGoogle Scholar
  70. 70.
    Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107(11):1395–402. PubMed PMID: 11390421.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res. 2003;288(1):51–9. PubMed PMID: 12878158.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang D, Zhang F, Zhang Y, Gao X, Li C, Yang N, et al. Combining erythropoietin infusion with intramyocardial delivery of bone marrow cells is more effective for cardiac repair. Transpl Int. 2007;20(2):174–83. PubMed PMID: 17239026.CrossRefPubMedGoogle Scholar
  73. 73.
    Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14(6):840–50. PubMed PMID: 16965940.CrossRefPubMedGoogle Scholar
  74. 74.
    Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A. 2002;99(4):2199–204. PubMed PMID: 11854516.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Goncalves MA, de Vries AA, Holkers M, van de Watering MJ, van der Velde I, van Nierop GP, et al. Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet. 2006;15(2):213–21. PubMed PMID: 16321987.CrossRefPubMedGoogle Scholar
  76. 76.
    Riordan NH, Chan K, Marleau AM, Ichim TE. Cord blood in regenerative medicine: Do we need immune suppression? J Transl Med. 2007;5:8. PubMed PMID: 17261200.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9. PubMed PMID: 19098906.CrossRefPubMedGoogle Scholar
  78. 78.
    Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009;183(2):993–1004. PubMed PMID: 19561093.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27(10):2624–35. PubMed PMID: 19676124.CrossRefPubMedGoogle Scholar
  80. 80.
    De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol. 2003;160(6):909–18. PubMed PMID: 12629053.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yang S, Alnaqeeb M, Simpson H, Goldspink G. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil. 1996;17(4):487–95. PubMed PMID: 8884603.CrossRefPubMedGoogle Scholar
  82. 82.
    Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004;22(4):617–24. PubMed PMID: 15277707.CrossRefPubMedGoogle Scholar
  83. 83.
    Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;12(2):153–63. PubMed PMID: 20081841. Pubmed Central PMCID: 4580288.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Contreras O, Rebolledo DL, Oyarzun JE, Olguin HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res. 2016;364(3):647–60. PubMed PMID: 26742767.CrossRefPubMedGoogle Scholar
  85. 85.
    Amit M, Itskovitz-Eldor J. Derivation and spontaneous differentiation of human embryonic stem cells. J Anat. 2002;200(Pt 3):225–32. PubMed PMID: 12033726.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Carpenter MK, Rosler E, Rao MS. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells. 2003;5(1):79–88. PubMed PMID: 12713704.CrossRefPubMedGoogle Scholar
  87. 87.
    Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005;23(6):699–708. PubMed PMID: 15940242.CrossRefPubMedGoogle Scholar
  88. 88.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6. PubMed PMID: 18059259.CrossRefPubMedGoogle Scholar
  89. 89.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. PubMed PMID: 19325077.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest. 2010;120(1):51–9. PubMed PMID: 20051636.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–95. PubMed PMID: 19951687.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Sun N, Longaker MT, Wu JC. Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle. 2010;9(5):880–5. PubMed PMID: 20160515.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gates CB, Karthikeyan T, Fu F, Huard J. Regenerative medicine for the musculoskeletal system based on muscle-derived stem cells. J Am Acad Orthop Surg. 2008;16(2):68–76. PubMed PMID: 18252837.CrossRefPubMedGoogle Scholar
  94. 94.
    Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials. 2007;28(36):5401–6. PubMed PMID: 17915311.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cossu G, Bianco P. Mesoangioblasts--vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev. 2003;13(5):537–42. PubMed PMID: 14550421.CrossRefPubMedGoogle Scholar
  96. 96.
    Gavina M, Belicchi M, Camirand G. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood. 2006;108(8):2857–66. PubMed PMID: 16809613.PubMedGoogle Scholar
  97. 97.
    Torrente Y, Camirand G, Pisati F, Belicchi M, Rossi B, Colombo F, et al. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol. 2003;162(3):511–20. PubMed PMID: 12885758.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Conway SJ, Henderson DJ, Copp AJ. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development. 1997;124(2):505–14. PubMed PMID: 9053326.PubMedGoogle Scholar
  99. 99.
    Tremblay P, Dietrich S, Mericskay M, Schubert FR, Li Z, Paulin D. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev Biol. 1998;203(1):49–61. PubMed PMID: 9806772.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mirella Meregalli
    • 1
  • Marzia Belicchi
    • 1
  • Yvan Torrente
    • 1
    Email author
  1. 1.Department of Pathophysiology and TransplantationFondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Centro Dino FerrariMilanItaly

Personalised recommendations