Cell Therapy pp 227-248 | Cite as

3D Printing for Cell Therapy Applications

  • Ashley N. Leberfinger
  • Kazim Kerim Moncal
  • Dino J. Ravnic
  • Ibrahim T. OzbolatEmail author
Part of the Molecular and Translational Medicine book series (MOLEMED)


Regenerative medicine is a rapidly expanding field, which shows great promise for treating organ dysfunction and tissue loss. Stem cells have many advantages over differentiated cells and are often used as a starting material for tissue engineering applications. Four types of stem cells have been used: embryonic, fetal, induced pluripotent, and adult. Bioprinting is an innovative technology, which can use stem cells to create functional tissues and organs. Cells are combined with various materials including hydrogels to form a bioink which can be precisely deposited based on a computer-aided design model. Materials are often combined to improve the bioink characteristics such as their compatibility with the various bioprinting methods including droplet-, extrusion-, and laser-based bioprinting. There have been successes in bioprinting several tissue types such as the vasculature, cartilage, bone, liver, and cardiac. However, there are several limitations and challenges, which must be overcome prior to a wide-scale clinical application.


Regenerative medicine Tissue engineering Stem cells Embryonic stem cells Fetal stem cells Induced pluripotent stem cells Adult stem cells Bioprinting Bioprinters Droplet-based bioprinting Extrusion-based bioprinting Laser-based bioprinting Bioink 



This work was supported by the US National Science Foundation CMMI Awards # 1349716 (ITO) and # 1462232 (ITO), Diabetes Action Research and Education Foundation Grant # 426 (ITO), the Osteology Foundation Grant # 15-042 (ITO), and the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under BIRCWH award # K12HD055882 “Career Development Program in Women’s Health Research at Penn State” (DJR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the abovementioned funding agencies.


  1. 1.
    Jain A, Bansal R. Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci. 2015;7(3):188Google Scholar
  2. 2.
    Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Dai R, Wang Z, Samanipour R, Koo K-I, Kim K. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int. 2016;2016:6737345.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Christopherson GT, Nesti LJ. Stem cell applications in military medicine. Stem Cell Res Ther. 2011;2(5):40.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells. 2006;24(12):2669–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Chung Y, Klimanskaya I, Becker S, Marh J, Lu S-J, Johnson J, et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature. 2006;439(7073):216–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, et al. Patient-specific stem cell lines derived from human Parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432–49.CrossRefPubMedGoogle Scholar
  9. 9.
    Loi P, Iuso D, Czernik M, Ogura A. A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol. 2016;34(10):791–7.CrossRefPubMedGoogle Scholar
  10. 10.
    O’Donoghue K, Fisk NM. Fetal stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):853–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003;32(3):265–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Campagnoli C, Roberts IAG, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402.CrossRefPubMedGoogle Scholar
  13. 13.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Yoshihara M, Hayashizaki Y, Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev Rep. 2017;13(1):7–16.CrossRefGoogle Scholar
  15. 15.
    Lewandowski J, Kurpisz M. Techniques of human embryonic stem cell and induced pluripotent stem cell derivation. Arch Immunol Ther Exp. 2016;64(5):349–70.CrossRefGoogle Scholar
  16. 16.
    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Wayne AS, Baird K, Egeler RM. Pediatric clinics of North America: hematopoietic stem cell transplantation stem cell transplantation for leukemia. Pediatr Clin N Am. 2010;57(1):1–25.CrossRefGoogle Scholar
  18. 18.
    Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71(2):181–97.CrossRefPubMedGoogle Scholar
  19. 19.
    Van Zant G, Liang Y. The role of stem cells in aging. Exp Hematol. 2003;31(8):659–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5(1):91–116.CrossRefPubMedGoogle Scholar
  21. 21.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim E-H, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells. 2014;6(1):65–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79(4):235–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Addit Manuf. 2017;13:179–200.CrossRefGoogle Scholar
  26. 26.
    Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng. 2014;136(6):061016.CrossRefGoogle Scholar
  27. 27.
    Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Mattimore JP, Groff RE, Burg T, Pepper ME, editors. A general purpose driver board for the HP26 ink-jet cartridge with applications to bioprinting. Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon). Concord: IEEE. 2010.Google Scholar
  29. 29.
    Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip. 2007;7(9):1139–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013.CrossRefPubMedGoogle Scholar
  31. 31.
    Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Ozbolat I, Gudapati H. A review on design for bioprinting. Bioprinting. 2016;3–4:1–14.CrossRefGoogle Scholar
  34. 34.
    Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101A(5):1255–64.CrossRefGoogle Scholar
  35. 35.
    Guillemot F, Guillotin B, Fontaine A, Ali M, Catros S, Kériquel V, et al. Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull. 2011;36(12):1015–9.CrossRefGoogle Scholar
  36. 36.
    Schiele NR, Chrisey DB, Corr DT. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C Methods. 2011;17(3):289–98.CrossRefPubMedGoogle Scholar
  37. 37.
    Ozbolat IT. Scaffold-based or scaffold-free bioprinting: competing and complementing approaches? ASME Nanotechnol Eng Med. 2015;6(2):024701.CrossRefGoogle Scholar
  38. 38.
    Riccardo L, Jetze V, Josep AP, Elisabeth E, Jos M, Miguel AM-T. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication. 2014;6(3):035020.CrossRefGoogle Scholar
  39. 39.
    Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006;24(7):299–304.CrossRefPubMedGoogle Scholar
  40. 40.
    Tan Y, Richards DJ, Trusk TC, Visconti RP, Yost MJ, Kindy MS, et al. 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication. 2014;6(2):024111.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31(1):10–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep. 2016;6.Google Scholar
  43. 43.
    Achilli T-M, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347–60.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hajdu Z, Mironov V, Mehesz AN, Norris RA, Markwald RR, Visconti RP. Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation. J Tissue Eng Regen Med. 2010;4(8):659–64.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6.Google Scholar
  47. 47.
    Gálvez-Montón C, Fernandez-Figueras MT, Martí M, Soler-Botija C, Roura S, Perea-Gil I, et al. Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Res Ther. 2015;6(1):108.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tricomi BJ, Dias AD, Corr DT. Stem cell bioprinting for applications in regenerative medicine. Ann N Y Acad Sci. 2016;1383(1):115–24.CrossRefPubMedGoogle Scholar
  49. 49.
    Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016;21(8):1257–71.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang Y, Yu Y, Chen H, Ozbolat IT. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication. 2013;5(2):025004.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am. 2009;300:64–71.CrossRefPubMedGoogle Scholar
  52. 52.
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30.CrossRefPubMedGoogle Scholar
  53. 53.
    Dolati F, Yu Y, Zhang Y, Jesus AMD, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology. 2014;25(14):145101.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 2015;33(7):395–400.CrossRefPubMedGoogle Scholar
  55. 55.
    Lee VK, Lanzi AM, Ngo H, Yoo S-S, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng. 2014;7(3):460–72.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ahn SH, Lee HJ, Lee J-S, Yoon H, Chun W, Kim GH. A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Sci Rep. 2015;5:13427.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.CrossRefPubMedGoogle Scholar
  58. 58.
    Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9(10):1304–11.CrossRefPubMedGoogle Scholar
  59. 59.
    Pati F, Song T-H, Rijal G, Jang J, Kim SW, Cho D-W. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230–41.CrossRefPubMedGoogle Scholar
  60. 60.
    Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. 2015;10(10):1568–77.CrossRefPubMedGoogle Scholar
  61. 61.
    Patel M, Patel KJ, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. J Biomed Mater Res A. 2010;94A(2):408–18.Google Scholar
  62. 62.
    Jakus AE, Shah RN. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A. 2017;105(1):274–83.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces. 2016;8(44):30017–26.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, et al. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater. 2016;17(1):136–48.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002.CrossRefPubMedGoogle Scholar
  66. 66.
    Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11–12):1304–12.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication. 2013;5(4):045007.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q, et al. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016;6.Google Scholar
  69. 69.
    Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, et al. Stem cell bioprinting: functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells (Adv. Healthcare Mater. 12/2016). Adv Healthc Mater. 2016;5(12):1428.CrossRefPubMedGoogle Scholar
  70. 70.
    Hsieh F-Y, Lin H-H, S-h H. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48–57.CrossRefPubMedGoogle Scholar
  71. 71.
    Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet. 2014;383(9933):1947–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Van Hoof D, Mendelsohn AD, Seerke R, Desai TA, German MS. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters. Stem Cell Res. 2011;6(3):276–85.CrossRefPubMedGoogle Scholar
  73. 73.
    Yang J, Zhou F, Xing R, Lin Y, Han Y, Teng C, et al. Development of large-scale size-controlled adult pancreatic progenitor cell clusters by an inkjet-printing technique. ACS Appl Mater Interfaces. 2015;7(21):11624–30.CrossRefPubMedGoogle Scholar
  74. 74.
    Song J, Millman JR. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells. Biofabrication. 2017;9(1):015002.CrossRefGoogle Scholar
  75. 75.
    Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102.CrossRefPubMedGoogle Scholar
  76. 76.
    Gaetani R, Doevendans PA, Metz CHG, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33(6):1782–90.CrossRefPubMedGoogle Scholar
  77. 77.
    Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 2011;32(35):9218–30.CrossRefPubMedGoogle Scholar
  78. 78.
    Ryu S, Yoo J, Jang Y, Han J, Yu SJ, Park J, et al. Nanothin coculture membranes with tunable pore architecture and thermoresponsive functionality for transfer-printable stem cell-derived cardiac sheets. ACS Nano. 2015;9(10):10186–202.CrossRefPubMedGoogle Scholar
  79. 79.
    Miller SF, Bessey P, Lentz CW, Jeng JC, Schurr M, Browning S, et al. National burn repository 2007 report: a synopsis of the 2007 call for data. J Burn Care Res. 2008;29(6):862–70.CrossRefPubMedGoogle Scholar
  80. 80.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–71.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nieves C, Marta G, Juan FC, Diego V, Jose LJ. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2017;9(1):015006.Google Scholar
  83. 83.
    Pourchet LJ, Thepot A, Albouy M, Courtial EJ, Boher A, Blum LJ, et al. Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater. 2017;6(4):1601101.CrossRefGoogle Scholar
  84. 84.
    Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol. 2016:1–13.Google Scholar
  85. 85.
    Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368(21):2043–5.CrossRefPubMedGoogle Scholar
  86. 86.
    Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomaterialia. 2017;51:1–20.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ashley N. Leberfinger
    • 1
  • Kazim Kerim Moncal
    • 2
  • Dino J. Ravnic
    • 1
  • Ibrahim T. Ozbolat
    • 3
    Email author
  1. 1.Department of SurgeryPenn State Milton S. Hershey Medical CenterHersheyUSA
  2. 2.Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkUSA
  3. 3.Department of Engineering Science and Mechanics, and Biomedical EngineeringPenn State UniversityUniversity ParkUSA

Personalised recommendations