Skip to main content

The Spindle Orientation Machinery Beyond Mitosis: When Cell Specialization Demands Polarization

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1002))

Abstract

Mitosis is a process requiring strict spatial organization of cellular components. In particular, the orientation of the mitotic spindle with respect to the tissue defines the division plane. In turn, the orientation of cell division can regulate tissue morphology or the fate of daughter cells. While we have learned much about the mechanisms of mitotic spindle orientation, recent studies suggest that the proteins implicated can also play important roles in post-mitotic cells. Interestingly, post-mitotic protein function often involves polarizing the cell cytoskeleton during differentiation, mirroring its ability to orient the mitotic spindle during division. This review focuses on alternative functions of the spindle orientation machinery after division, when the cell undergoes a specialization process associated with differentiation or mature function, and discusses diseases associated to those alternative functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Noatynska A, Gotta M, Meraldi P (2012) Mitotic spindle (DIS)orientation and DISease: cause or consequence? J Cell Biol 199(7):1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergstralh DT, St Johnston D (2014) Spindle orientation: what if it goes wrong? Semin Cell Dev Biol 34:140–145

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38(1):21–23

    Article  CAS  PubMed  Google Scholar 

  4. Nakajima Y, Meyer EJ, Kroesen A, McKinney SA, Gibson MC (2013) Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature 500(7462):359–362

    Article  CAS  PubMed  Google Scholar 

  5. Pease JC, Tirnauer JS (2011) Mitotic spindle misorientation in cancer—out of alignment and into the fire. J Cell Sci 124(Pt 7):1007–1016

    Article  CAS  PubMed  Google Scholar 

  6. Gillies TE, Cabernard C (2011) Cell division orientation in animals. Curr Biol 21(15):R599–R609

    Article  CAS  PubMed  Google Scholar 

  7. Kulukian A, Fuchs E (2013) Spindle orientation and epidermal morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 368(1629):20130016

    Article  CAS  Google Scholar 

  8. Lancaster MA, Knoblich JA (2012) Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol 22(5):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu MS, Johnston CA (2013) Molecular pathways regulating mitotic spindle orientation in animal cells. Development 140(9):1843–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morin X, Bellaiche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21(1):102–119

    Article  CAS  PubMed  Google Scholar 

  11. Poulson ND, Lechler T (2012) Asymmetric cell divisions in the epidermis. Int Rev Cell Mol Biol 295:199–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen-Ngoc T, Afshar K, Gonczy P (2007) Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9(11):1294–1302

    Article  CAS  PubMed  Google Scholar 

  13. Couwenbergs C, Labbe JC, Goulding M, Marty T, Bowerman B, Gotta M (2007) Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J Cell Biol 179(1):15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park DH, Rose LS (2008) Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning. Dev Biol 315(1):42–54

    Article  CAS  PubMed  Google Scholar 

  15. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poulson ND, Lechler T (2010) Robust control of mitotic spindle orientation in the developing epidermis. J Cell Biol 191(5):915–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williams SE, Beronja S, Pasolli HA, Fuchs E (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470(7334):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Williams SE, Ratliff LA, Postiglione MP, Knoblich JA, Fuchs E (2014) Par3-mInsc and Galphai3 cooperate to promote oriented epidermal cell divisions through LGN. Nat Cell Biol 16(8):758–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10(1):93–101

    Article  CAS  PubMed  Google Scholar 

  20. Morin X, Jaouen F, Durbec P (2007) Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci 10(11):1440–1448

    Article  CAS  PubMed  Google Scholar 

  21. Postiglione MP, Juschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA (2011) Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72(2):269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zigman M, Cayouette M, Charalambous C, Schleiffer A, Hoeller O, Dunican D, McCudden CR, Firnberg N, Barres BA, Siderovski DP et al (2005) Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48(4):539–545

    Article  CAS  PubMed  Google Scholar 

  23. Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9(5):355–366

    Article  PubMed  CAS  Google Scholar 

  24. Wodarz A, Ramrath A, Grimm A, Knust E (2000) Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 150(6):1361–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuchinke U, Grawe F, Knust E (1998) Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol 8(25):1357–1365

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402(6761):548–551

    Article  CAS  PubMed  Google Scholar 

  28. Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402(6761):544–547

    Article  CAS  PubMed  Google Scholar 

  29. Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA (1996) Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383(6595):50–55

    Article  CAS  PubMed  Google Scholar 

  30. Parmentier ML, Woods D, Greig S, Phan PG, Radovic A, Bryant P, O’Kane CJ (2000) Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci 20(14):RC84

    CAS  PubMed  Google Scholar 

  31. Yu F, Morin X, Cai Y, Yang X, Chia W (2000) Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100(4):399–409

    Article  CAS  PubMed  Google Scholar 

  32. Schaefer M, Shevchenko A, Shevchenko A, Knoblich JA (2000) A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 10(7):353–362

    Article  CAS  PubMed  Google Scholar 

  33. Schaefer M, Petronczki M, Dorner D, Forte M, Knoblich JA (2001) Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107(2):183–194

    Article  CAS  PubMed  Google Scholar 

  34. Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119(4):503–516

    Article  CAS  PubMed  Google Scholar 

  35. Du Q, Stukenberg PT, Macara IG (2001) A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3(12):1069–1075

    Article  CAS  PubMed  Google Scholar 

  36. Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8(6):594–600

    Article  CAS  PubMed  Google Scholar 

  37. Bowman SK, Neumuller RA, Novatchkova M, Du Q, Knoblich JA (2006) The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 10(6):731–742

    Article  CAS  PubMed  Google Scholar 

  38. Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F (2006) Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8(6):586–593

    Article  CAS  PubMed  Google Scholar 

  39. Zhu J, Wen W, Zheng Z, Shang Y, Wei Z, Xiao Z, Pan Z, Du Q, Wang W, Zhang M (2011) LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Galphai/LGN/NuMA pathways. Mol Cell 43(3):418–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Culurgioni S, Alfieri A, Pendolino V, Laddomada F, Mapelli M (2011) Inscuteable and NuMA proteins bind competitively to Leu-Gly-Asn repeat-enriched protein (LGN) during asymmetric cell divisions. PNAS 108(52):20998–21003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuzawa S, Kamakura S, Iwakiri Y, Hayase J, Sumimoto H (2011) Structural basis for interaction between the conserved cell polarity proteins Inscuteable and Leu-Gly-Asn repeat-enriched protein (LGN). PNAS 108(48):19210–19215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kotak S, Busso C, Gonczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199(1):97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaushik R, Yu F, Chia W, Yang X, Bahri S (2003) Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol Biol Cell 14(8):3144–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Natochin M, Gasimov KG, Artemyev NO (2001) Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs. Biochemistry 40(17):5322–5328

    Article  CAS  PubMed  Google Scholar 

  45. Blumer JB, Cismowski MJ, Sato M, Lanier SM (2005) AGS proteins: receptor-independent activators of G-protein signaling. Trends Pharmacol Sci 26(9):470–476

    CAS  PubMed  Google Scholar 

  46. Yoshiura S, Ohta N, Matsuzaki F (2012) Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev Cell 22(1):79–91

    Article  CAS  PubMed  Google Scholar 

  47. Afshar K, Willard FS, Colombo K, Johnston CA, McCudden CR, Siderovski DP, Gonczy P (2004) RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos. Cell 119(2):219–230

    Article  CAS  PubMed  Google Scholar 

  48. Couwenbergs C, Spilker AC, Gotta M (2004) Control of embryonic spindle positioning and Galpha activity by C. elegans RIC-8. Curr Biol 14(20):1871–1876

    Article  CAS  PubMed  Google Scholar 

  49. David NB, Martin CA, Segalen M, Rosenfeld F, Schweisguth F, Bellaiche Y (2005) Drosophila Ric-8 regulates Galphai cortical localization to promote Galphai-dependent planar orientation of the mitotic spindle during asymmetric cell division. Nat Cell Biol 7(11):1083–1090

    Article  CAS  PubMed  Google Scholar 

  50. Hampoelz B, Hoeller O, Bowman SK, Dunican D, Knoblich JA (2005) Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat Cell Biol 7(11):1099–1105

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Ng KH, Qian H, Siderovski DP, Chia W, Yu F (2005) Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat Cell Biol 7(11):1091–1098

    Article  CAS  PubMed  Google Scholar 

  52. VanDongen AM (2009) Biology of the NMDA receptor. CRC Press, Boca Raton

    Google Scholar 

  53. Sans N, Wang PY, Du Q, Petralia RS, Wang YX, Nakka S, Blumer JB, Macara IG, Wenthold RJ (2005) mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 7(12):1179–1190

    Article  PubMed  CAS  Google Scholar 

  54. Oliva C, Escobedo P, Astorga C, Molina C, Sierralta J (2012) Role of the MAGUK protein family in synapse formation and function. Dev Neurobiol 72(1):57–72

    Article  CAS  PubMed  Google Scholar 

  55. Knoblich JA (2005) Pins for spines. Nat Cell Biol 7(12):1157–1158

    Article  PubMed  Google Scholar 

  56. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22(3):496–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wiser O, Qian X, Ehlers M, Ja WW, Roberts RW, Reuveny E, Jan YN, Jan LY (2006) Modulation of basal and receptor-induced GIRK potassium channel activity and neuronal excitability by the mammalian PINS homolog LGN. Neuron 50(4):561–573

    Article  CAS  PubMed  Google Scholar 

  59. Sanada K, Tsai LH (2005) G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122(1):119–131

    Article  CAS  PubMed  Google Scholar 

  60. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, Lanier SM, Kalivas PW (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42(2):269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I (2005) Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci USA 102(24):8746–8751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Groves B, Gong Q, Xu Z, Huntsman C, Nguyen C, Li D, Ma D (2007) A specific role of AGS3 in the surface expression of plasma membrane proteins. Proc Natl Acad Sci USA 104(46):18103–18108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johns DC, Marx R, Mains RE, O’Rourke B, Marban E (1999) Inducible genetic suppression of neuronal excitability. J Neurosci Off J Soc Neurosci 19(5):1691–1697

    CAS  Google Scholar 

  64. Wang F (2009) The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb Perspect Biol 1(4):a002980

    Article  PubMed  PubMed Central  Google Scholar 

  65. Neptune ER, Bourne HR (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA 94(26):14489–14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18(11):R485–R494

    Article  CAS  PubMed  Google Scholar 

  67. Kamakura S, Nomura M, Hayase J, Iwakiri Y, Nishikimi A, Takayanagi R, Fukui Y, Sumimoto H (2013) The cell polarity protein mInsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway. Dev Cell 26(3):292–302

    Article  CAS  PubMed  Google Scholar 

  68. Wright CE, Kushner EJ, Du Q, Bautch VL (2015) LGN directs interphase endothelial cell behavior via the microtubule network. PLoS One 10(9):e0138763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ezan J, Lasvaux L, Gezer A, Novakovic A, May-Simera H, Belotti E, Lhoumeau AC, Birnbaumer L, Beer-Hammer S, Borg JP et al (2013) Primary cilium migration depends on G-protein signalling control of subapical cytoskeleton. Nat Cell Biol 15(9):1107–1115

    Article  CAS  PubMed  Google Scholar 

  70. Tarchini B, Jolicoeur C, Cayouette M (2013) A molecular blueprint at the apical surface establishes planar asymmetry in cochlear hair cells. Dev Cell 27(1):88–102

    Article  CAS  PubMed  Google Scholar 

  71. Bhonker Y, Abu-Rayyan A, Ushakov K, Amir-Zilberstein L, Shivatzki S, Yizhar-Barnea O, Elkan-Miller T, Tayeb-Fligelman E, Kim SM, Landau M et al (2016) The GPSM2/LGN GoLoco motifs are essential for hearing. Mamm Genome 27(1–2):29–46

    Article  CAS  PubMed  Google Scholar 

  72. Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Development 138(10):1877–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann N Y Acad Sci 374:1–10

    Article  CAS  PubMed  Google Scholar 

  74. Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, Yoder BK, Chen P (2008) Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40(1):69–77

    Article  CAS  PubMed  Google Scholar 

  75. Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423(6936):173–177

    Article  CAS  PubMed  Google Scholar 

  76. Almomani R, Sun Y, Aten E, Hilhorst-Hofstee Y, Peeters-Scholte CM, van Haeringen A, Hendriks YM, den Dunnen JT, Breuning MH, Kriek M et al (2013) GPSM2 and Chudley-McCullough syndrome: a Dutch founder variant brought to North America. Am J Med Genet A 161A(5):973–976

    Article  PubMed  CAS  Google Scholar 

  77. Diaz-Horta O, Sirmaci A, Doherty D, Nance W, Arnos K, Pandya A, Tekin M (2012) GPSM2 mutations in Chudley-McCullough syndrome. Am J Med Genet A 158A(11):2972–2973

    Article  PubMed  CAS  Google Scholar 

  78. Doherty D, Chudley AE, Coghlan G, Ishak GE, Innes AM, Lemire EG, Rogers RC, Mhanni AA, Phelps IG, Jones SJ et al (2012) GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet 90(6):1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, Abu Rayyan A, Loulus S, Avraham KB, King MC et al (2010) Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet 87(1):90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yariz KO, Walsh T, Akay H, Duman D, Akkaynak AC, King MC, Tekin M (2012) A truncating mutation in GPSM2 is associated with recessive non-syndromic hearing loss. Clin Genet 81(3):289–293

    Article  CAS  PubMed  Google Scholar 

  81. Chudley AE, McCullough C, McCullough DW (1997) Bilateral sensorineural deafness and hydrocephalus due to foramen of Monro obstruction in sibs: a newly described autosomal recessive disorder. Am J Med Genet 68(3):350–356

    Article  CAS  PubMed  Google Scholar 

  82. Alrashdi I, Barker R, Patton MA (2011) Chudley-McCullough syndrome: another report and a brief review of the literature. Clin Dysmorphol 20(2):107–110

    Article  PubMed  Google Scholar 

  83. Hilgert N, Smith RJ, Van Camp G (2009) Function and expression pattern of nonsyndromic deafness genes. Curr Mol Med 9(5):546–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Speicher S, Fischer A, Knoblich J, Carmena A (2008) The PDZ protein Canoe regulates the asymmetric division of Drosophila neuroblasts and muscle progenitors. Curr Biol 18(11):831–837

    Article  CAS  PubMed  Google Scholar 

  85. Wee B, Johnston CA, Prehoda KE, Doe CQ (2011) Canoe binds RanGTP to promote Pins(TPR)/Mud-mediated spindle orientation. J Cell Biol 195(3):369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carminati M, Cecatiello V, Mapelli M (2016) Crystallization and X-ray diffraction of LGN in complex with the actin-binding protein afadin. Acta Crystallogr Sect F Struct Biol Commun 72(Pt 2):145–151

    Article  CAS  Google Scholar 

  87. Carminati M, Gallini S, Pirovano L, Alfieri A, Bisi S, Mapelli M (2016) Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation. Nat Struct Mol Biol 23(2):155–163

    Article  CAS  PubMed  Google Scholar 

  88. Mandai K, Rikitake Y, Shimono Y, Takai Y (2013) Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Prog Mol Biol Transl Sci 116:433–454

    Article  CAS  PubMed  Google Scholar 

  89. Beaudoin GM 3rd, Schofield CM, Nuwal T, Zang K, Ullian EM, Huang B, Reichardt LF (2012) Afadin, a Ras/Rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. J Neurosci Off J Soc Neurosci 32(1):99–110

    Article  CAS  Google Scholar 

  90. Xie Z, Huganir RL, Penzes P (2005) Activity-dependent dendritic spine structural plasticity is regulated by small GTPase Rap1 and its target AF-6. Neuron 48(4):605–618

    Article  CAS  PubMed  Google Scholar 

  91. Miyata M, Ogita H, Komura H, Nakata S, Okamoto R, Ozaki M, Majima T, Matsuzawa N, Kawano S, Minami A et al (2009) Localization of nectin-free afadin at the leading edge and its involvement in directional cell movement induced by platelet-derived growth factor. J Cell Sci 122(Pt 23):4319–4329

    Article  CAS  PubMed  Google Scholar 

  92. Slovakova J, Speicher S, Sanchez-Soriano N, Prokop A, Carmena A (2012) The actin-binding protein Canoe/AF-6 forms a complex with Robo and is required for Slit-Robo signaling during axon pathfinding at the CNS midline. J Neurosci Off J Soc Neurosci 32(29):10035–10044

    Article  CAS  Google Scholar 

  93. Petritsch C, Tavosanis G, Turck CW, Jan LY, Jan YN (2003) The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 4(2):273–281

    Article  CAS  PubMed  Google Scholar 

  94. Hasson T, Mooseker MS (1994) Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol 127(2):425–440

    Article  CAS  PubMed  Google Scholar 

  95. Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401(6752):505–508

    Article  CAS  PubMed  Google Scholar 

  96. Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11(4):369–375

    Article  CAS  PubMed  Google Scholar 

  97. Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, Mohiddin SA, Fananapazir L, Caruso RC, Husnain T et al (2003) Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72(5):1315–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones ML, Notarangelo A, Di Iorio E, Carella M et al (2001) MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet 69(3):635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214(2):331–341

    Article  CAS  PubMed  Google Scholar 

  100. Roux I, Hosie S, Johnson SL, Bahloul A, Cayet N, Nouaille S, Kros CJ, Petit C, Safieddine S (2009) Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum Mol Genet 18(23):4615–4628

    Article  CAS  PubMed  Google Scholar 

  101. Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168(2):329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chibalina MV, Poliakov A, Kendrick-Jones J, Buss F (2010) Myosin VI and optineurin are required for polarized EGFR delivery and directed migration. Traffic 11(10):1290–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buss F, Kendrick-Jones J, Lionne C, Knight AE, Cote GP, Paul Luzio J (1998) The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol 143(6):1535–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Geisbrecht ER, Montell DJ (2002) Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 4(8):616–620

    CAS  PubMed  Google Scholar 

  105. Woodard GE, Huang NN, Cho H, Miki T, Tall GG, Kehrl JH (2010) Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol 30(14):3519–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kataria R, Xu X, Fusetti F, Keizer-Gunnink I, Jin T, van Haastert PJ, Kortholt A (2013) Dictyostelium Ric8 is a nonreceptor guanine exchange factor for heterotrimeric G proteins and is important for development and chemotaxis. Proc Natl Acad Sci USA 110(16):6424–6429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D, Charrin BC, Dietrich P, Volvert ML, Guillemot F, Dragatsis I et al (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67(3):392–406

    Article  CAS  PubMed  Google Scholar 

  108. Elias S, Thion MS, Yu H, Sousa CM, Lasgi C, Morin X, Humbert S (2014) Huntingtin regulates mammary stem cell division and differentiation. Stem Cell Rep 2(4):491–506

    Article  CAS  Google Scholar 

  109. Elias S, McGuire JR, Yu H, Humbert S (2015) Huntingtin is required for epithelial polarity through RAB11A-mediated apical trafficking of PAR3-aPKC. PLoS Biol 13(5):e1002142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LS (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40(1):25–40

    Article  CAS  PubMed  Google Scholar 

  111. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S et al (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118(1):127–138

    Article  CAS  PubMed  Google Scholar 

  112. Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li XJ, Saudou F, Humbert S (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27(15):2124–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Tarchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tadenev, A.L.D., Tarchini, B. (2017). The Spindle Orientation Machinery Beyond Mitosis: When Cell Specialization Demands Polarization. In: Gotta, M., Meraldi, P. (eds) Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-319-57127-0_9

Download citation

Publish with us

Policies and ethics