Skip to main content

Mitotic Dysfunction Associated with Aging Hallmarks

  • Chapter
  • First Online:
Cell Division Machinery and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1002))

Abstract

Aging is a biological process characterized by the progressive deterioration of physiological functions known to be the main risk factor for chronic diseases and declining health. There has been an emerging connection between aging and aneuploidy, an aberrant number of chromosomes, even though the molecular mechanisms behind age-associated aneuploidy remain largely unknown. In recent years, several genetic pathways and biochemical processes controlling the rate of aging have been identified and proposed as aging hallmarks. Primary hallmarks that cause the accumulation of cellular damage include genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis (López-Otín et al., Cell 153:1194–1217, 2013). Here we review the provocative link between these aging hallmarks and the loss of chromosome segregation fidelity during cell division, which could support the correlation between aging and aneuploidy seen over the past decades. Secondly, we review the systemic impacts of aneuploidy in cell physiology and emphasize how these include some of the primary hallmarks of aging. Based on the evidence, we propose a mutual causality between aging and aneuploidy, and suggest modulation of mitotic fidelity as a potential means to ameliorate healthy lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chromosome content that is not an exact multiple of the haploid complement; imbalanced karyotype.

  2. 2.

    Segregation of a whole chromosome to the incorrect daughter cell during mitosis.

  3. 3.

    Gains or losses of entire chromosomes arising from mis-segregation events during cell division; generally denotes a diploid organism with subpopulations of aneuploid somatic cells.

  4. 4.

    Part of the chromosome comprised of repetitive DNA where the sister-chromatids are connected and the kinetochores assembled.

  5. 5.

    Large protein complex that allows the attachment of chromosomes to spindle microtubules.

  6. 6.

    Surveillance mechanism that halts cell cycle progression until all chromosomes are correctly attached to the spindle.

  7. 7.

    The main microtubule-organizing center of the cell, which contains the centrioles (in animal cells) and duplicates before mitosis to form a bipolar spindle.

  8. 8.

    Chromosome that is left behind at the spindle equator when all the other chromosomes have segregated to opposite spindle poles.

  9. 9.

    Group of rare diseases caused by mutations in genes functionally linked to formation/maintenance of nuclear lamina.

  10. 10.

    A condition in which aging features arise early in life.

  11. 11.

    Features of late-life aging in young individuals, as for instance grey hair, cataracts and body mass loss.

  12. 12.

    Partially mimic an aging phenotype; do not include all signs of aging.

  13. 13.

    Refers to an essentially irreversible growth arrest that occurs when cells that can divide encounter oncogenic stress (for instance, strong mitogenic signals); it is a secondary aging hallmark or compensatory response to primary causes of cellular damage.

  14. 14.

    Stretched chromatin structure in between two daughter cells.

  15. 15.

    Small nucleus in a daughter cell generated by chromosome mis-segregation.

  16. 16.

    Vesicular membraneous matrix that embeds the microtubule spindle apparatus during mitosis.

  17. 17.

    Natural or chronological aging.

  18. 18.

    Increased frequency of chromosome mis-segregation events.

  19. 19.

    Microtubule bundles that attach sister kinetochores to spindle poles and power chromosome movement during mitosis.

  20. 20.

    Multiprotein complex with ubiquitin-ligase activity that is responsible for the ubiquitination of numerous key cell-cycle regulators.

References

  1. Jacobs PA, Court Brown WM (1966) Age and chromosomes. Nature 212:823–824

    Article  CAS  PubMed  Google Scholar 

  2. Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacobs PA, Brunton M, Court Brown WM et al (1963) Change of human chromosome count distribution with age: evidence for a sex differences. Nature 197:1080–1081

    Article  CAS  PubMed  Google Scholar 

  4. Pierre RV, Hoagland HC (1972) Age-associated aneuploidy: loss of Y chromosome from human bone marrow cells with aging. Cancer 30:889–894

    Article  CAS  PubMed  Google Scholar 

  5. Stone JF, Sandberg AA (1995) Sex chromosome aneuploidy and aging. Mutat Res 338:107–113

    Article  CAS  PubMed  Google Scholar 

  6. Dumanski JP, Rasi C, Lönn M et al (2015) Mutagenesis. Smoking is associated with mosaic loss of chromosome Y. Science 347:81–83

    Article  CAS  PubMed  Google Scholar 

  7. Fitzgerald PH, McEwan CM (1977) Total aneuploidy and age-related sex chromosome aneuploidy in cultured lymphocytes of normal men and women. Hum Genet 39:329–337

    Article  CAS  PubMed  Google Scholar 

  8. Guttenbach M, Schakowski R, Schmid M (1994) Aneuploidy and ageing: sex chromosome exclusion into micronuclei. Hum Genet 94:295–298

    Article  CAS  PubMed  Google Scholar 

  9. Alejandro J, Payne S, Mukherjee AB, Thomas S (1996) Age-related aneuploidy analysis of human blood cells in vivo by fluorescence in situ hybridization (FISH). Mech Ageing Dev 90:145–156

    Article  PubMed  Google Scholar 

  10. Mukherjee AB, Thomas S (1997) A longitudinal study of human age-related chromosomal analysis in skin fibroblasts. Exp Cell Res 235:161–169

    Article  CAS  PubMed  Google Scholar 

  11. Nakagome Y, Abe T, Misawa S et al (1984) The “loss” of centromeres from chromosomes of aged women. Am J Hum Genet 36:398–404

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carere A, Antoccia A, Cimini D et al (1999) Analysis of chromosome loss and non-disjunction in cytokinesis-blocked lymphocytes of 24 male subjects. Mutagenesis 14:491–496

    Article  CAS  PubMed  Google Scholar 

  13. Faggioli F, Wang T, Vijg J, Montagna C (2012) Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet 21:5246–5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas P, Fenech M (2008) Chromosome 17 and 21 aneuploidy in buccal cells is increased with ageing and in Alzheimer’s disease. Mutagenesis 23:57–65

    Article  CAS  PubMed  Google Scholar 

  15. Yurov YB, Vorsanova SG, Liehr T et al (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knouse KA, Wu J, Whittaker CA, Amon A (2014) Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 111:13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van den Bos H, Spierings DCJ, Taudt AS et al (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol 17:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Geigl JB, Langer S, Barwisch S et al (2004) Analysis of gene expression patterns and chromosomal changes associated with aging. Cancer Res 64:8550–8557

    Article  CAS  PubMed  Google Scholar 

  19. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287:2486–2492

    Article  CAS  PubMed  Google Scholar 

  20. Nicholson JM, Cimini D (2011) How mitotic errors contribute to karyotypic diversity in cancer. Adv Cancer Res 112:43–75

    Article  CAS  PubMed  Google Scholar 

  21. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loncarek J, Kisurina-Evgenieva O, Vinogradova T et al (2007) The centromere geometry essential for keeping mitosis error free is controlled by spindle forces. Nature 450:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F (2003) Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14:3821–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4:e6564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bakhoum SF, Compton DA (2012) Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 122:1138–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  29. Erol A (2011) Genotoxic stress-mediated cell cycle activities for the decision of cellular fate. Cell Cycle 10:3239–3248

    Article  CAS  PubMed  Google Scholar 

  30. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226:316–325

    Article  CAS  PubMed  Google Scholar 

  31. Coppedè F, Migliore L (2010) DNA repair in premature aging disorders and neurodegeneration. Curr Aging Sci 3:3–19

    Article  PubMed  Google Scholar 

  32. Puzianowska-Kuznicka M, Kuznicki J (2005) Genetic alterations in accelerated ageing syndromes. Do they play a role in natural ageing? Int J Biochem Cell Biol 37:947–960

    Article  CAS  PubMed  Google Scholar 

  33. Schumacher B, Garinis GA, Hoeijmakers JHJ (2008) Age to survive: DNA damage and aging. Trends Genet 24:77–85

    Article  CAS  PubMed  Google Scholar 

  34. Vermeij WP, Hoeijmakers JHJ, Pothof J (2014) Aging: not all DNA damage is equal. Curr Opin Genet Dev 26:124–130

    Article  CAS  PubMed  Google Scholar 

  35. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. doi:10.1016/j.cell.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Edifizi D, Schumacher B (2015) Genome instability in development and aging: insights from nucleotide excision repair in humans, mice, and worms. Biomol Ther 5:1855–1869

    CAS  Google Scholar 

  38. Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acids Res 35:7466–7474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goukassian D, Gad F, Yaar M et al (2000) Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J 14:1325–1334

    Article  CAS  PubMed  Google Scholar 

  40. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Vugt MATM, Gardino AK, Linding R et al (2010) A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 8:e1000287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Benada J, Burdová K, Lidak T et al (2015) Polo-like kinase 1 inhibits DNA damage response during mitosis. Cell Cycle 14:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orthwein A, Fradet-Turcotte A, Noordermeer SM et al (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344:189–193

    Article  CAS  PubMed  Google Scholar 

  44. Bakhoum SF, Kabeche L, Murnane JP et al (2014) DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov 4:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mehta PA, Harris RE, Davies SM et al (2010) Numerical chromosomal changes and risk of development of myelodysplastic syndrome – acute myeloid leukemia in patients with Fanconi anemia. Cancer Genet Cytogenet 203:180–186

    Article  CAS  PubMed  Google Scholar 

  46. Pulliam-Leath AC, Ciccone SL, Nalepa G et al (2010) Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood 116:2915–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11:761–768

    Article  CAS  PubMed  Google Scholar 

  48. Nalepa G, Enzor R, Sun Z et al (2013) Fanconi anemia signaling network regulates the spindle assembly checkpoint. J Clin Invest 123:3839–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh DK, Ahn B, Bohr VA (2009) Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10:235–252

    Article  CAS  PubMed  Google Scholar 

  50. Honma M, Tadokoro S, Sakamoto H et al (2002) Chromosomal instability in B-lymphoblasotoid cell lines from Werner and Bloom syndrome patients. Mutat Res 520:15–24

    Article  CAS  PubMed  Google Scholar 

  51. Kaloustian Der VM, McGill JJ, Vekemans M, Kopelman HR (1990) Clonal lines of aneuploid cells in Rothmund-Thomson syndrome. Am J Med Genet 37:336–339

    Article  Google Scholar 

  52. Melaragno MI, Pagni D, Smith MA (1995) Cytogenetic aspects of Werner’s syndrome lymphocyte cultures. Mech Ageing Dev 78:117–122

    Article  CAS  PubMed  Google Scholar 

  53. Mukherjee AB, Costello C (1998) Aneuploidy analysis in fibroblasts of human premature aging syndromes by FISH during in vitro cellular aging. Mech Ageing Dev 103:209–222

    Article  CAS  PubMed  Google Scholar 

  54. Salk D, Au K, Hoehn H, Martin GM (1981) Cytogenetics of Werner’s syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet Cell Genet 30:92–107

    Article  CAS  PubMed  Google Scholar 

  55. Chang S, Multani AS, Cabrera NG et al (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882

    Article  CAS  PubMed  Google Scholar 

  56. Chester N, Babbe H, Pinkas J et al (2006) Mutation of the murine Bloom’s syndrome gene produces global genome destabilization. Mol Cell Biol 26:6713–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mann MB, Hodges CA, Barnes E et al (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 14:813–825

    Article  CAS  PubMed  Google Scholar 

  58. Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760

    Article  CAS  PubMed  Google Scholar 

  59. Chung L, Onyango D, Guo Z et al (2015) The FEN1 E359K germline mutation disrupts the FEN1-WRN interaction and FEN1 GEN activity, causing aneuploidy-associated cancers. Oncogene 34:902–911

    Article  CAS  PubMed  Google Scholar 

  60. Larsen NB, Hickson ID (2013) RecQ helicases: conserved guardians of genomic integrity. Adv Exp Med Biol 767:161–184

    Article  CAS  PubMed  Google Scholar 

  61. Chan KL, North PS, Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26:3397–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu Y, Nielsen CF, Yao Q, Hickson ID (2014) The origins and processing of ultra fine anaphase DNA bridges. Curr Opin Genet Dev 26:1–5

    Article  PubMed  CAS  Google Scholar 

  63. Ke Y, Huh J-W, Warrington R et al (2011) PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution. EMBO J 30:3309–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ito S, Tan LJ, Andoh D et al (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 39:632–640

    Article  CAS  PubMed  Google Scholar 

  65. Tan LJ, Saijo M, Kuraoka I et al (2012) Xeroderma pigmentosum group F protein binds to Eg5 and is required for proper mitosis: implications for XP-F and XFE. Genes Cells 17:173–185

    Article  CAS  PubMed  Google Scholar 

  66. Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15:1008–1015

    Article  CAS  PubMed  Google Scholar 

  67. Dechat T, Pfleghaar K, Sengupta K et al (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gruenbaum Y, Foisner R (2015) Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131–164

    Article  CAS  PubMed  Google Scholar 

  69. Cau P, Navarro C, Harhouri K et al (2014) Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 29:125–147

    Article  CAS  PubMed  Google Scholar 

  70. Cadiñanos J, Varela I, López-Otín C, Freije JMP (2005) From immature lamin to premature aging: molecular pathways and therapeutic opportunities. Cell Cycle 4:1732–1735

    Article  PubMed  Google Scholar 

  71. Goldman RD, Shumaker DK, Erdos MR et al (2004) Accumulation of mutant lamin a causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang SH, Chang SY, Ren S et al (2011) Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum Mol Genet 20:436–444

    Article  CAS  PubMed  Google Scholar 

  73. Mehta IS, Eskiw CH, Arican HD et al (2011) Farnesyltransferase inhibitor treatment restores chromosome territory positions and active chromosome dynamics in Hutchinson-Gilford progeria syndrome cells. Genome Biol 12:R74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang SH, Bergo MO, Toth JI et al (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A 102:10291–10296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moulson CL, Go G, Gardner JM et al (2005) Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol 125:913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Navarro CL, Cadiñanos J, De Sandre-Giovannoli A et al (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin a precursors. Hum Mol Genet 14:1503–1513

    Article  CAS  PubMed  Google Scholar 

  77. Jamin A, Wiebe MS (2015) Barrier to Autointegration factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol 34:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11:440–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McClintock D, Ratner D, Lokuge M et al (2007) The mutant form of lamin a that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2:e1269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Freund A, Laberge R-M, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23:2066–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shimi T, Butin-Israeli V, Adam SA et al (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cao K, Capell BC, Erdos MR et al (2007) A lamin a protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A 104:4949–4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dechat T, Shimi T, Adam SA et al (2007) Alterations in mitosis and cell cycle progression caused by a mutant lamin a known to accelerate human aging. Proc Natl Acad Sci U S A 104:4955–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pratt CH, Curtain M, Donahue LR, Shopland LS (2011) Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse Lmna Dhe dermal fibroblasts. PLoS One 6:e18065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gruber J, Lampe T, Osborn M, Weber K (2005) RNAi of FACE1 protease results in growth inhibition of human cells expressing lamin a: implications for Hutchinson-Gilford progeria syndrome. J Cell Sci 118:689–696

    Article  CAS  PubMed  Google Scholar 

  87. Liu B, Wang J, Chan KM et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

    Article  CAS  PubMed  Google Scholar 

  88. Qi R, Xu N, Wang G et al (2015) The lamin-A/C-LAP2α-BAF1 protein complex regulates mitotic spindle assembly and positioning. J Cell Sci 128:2830–2841

    Article  CAS  PubMed  Google Scholar 

  89. Schweizer N, Weiss M, Maiato H (2014) The dynamic spindle matrix. Curr Opin Cell Biol 28:1–7

    Article  CAS  PubMed  Google Scholar 

  90. Ma L, Tsai M-Y, Wang S et al (2009) Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nat Cell Biol 11:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng Y (2010) A membranous spindle matrix orchestrates cell division. Nat Rev Mol Cell Biol 11:529–535

    Article  CAS  PubMed  Google Scholar 

  92. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198

    Article  CAS  PubMed  Google Scholar 

  93. de Lange T (2005) Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol 70:197–204

    Article  PubMed  Google Scholar 

  94. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  PubMed  Google Scholar 

  95. Fumagalli M, Rossiello F, Clerici M et al (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hewitt G, Jurk D, Marques FDM et al (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  CAS  PubMed  Google Scholar 

  98. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  99. Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31:443–448

    Article  CAS  PubMed  Google Scholar 

  100. Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  101. Batista LFZ (2014) Telomere biology in stem cells and reprogramming. Prog Mol Biol Transl Sci 125:67–88

    Article  CAS  PubMed  Google Scholar 

  102. Simm A, Campisi J (2014) Stress and aging. Exp Gerontol 59:1–2

    Article  PubMed  Google Scholar 

  103. Blasco MA, Lee HW, Hande MP et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  104. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  CAS  PubMed  Google Scholar 

  106. Jaskelioff M, Muller FL, Paik J-H et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106

    Article  CAS  PubMed  Google Scholar 

  107. Lee D-H, Acharya SS, Kwon M et al (2014) Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol Cell 54:512–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cesare AJ (2014) Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability. BioEssays 36:1054–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cesare AJ, Hayashi MT, Crabbe L, Karlseder J (2013) The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol Cell 51:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaul Z, Cesare AJ, Huschtscha LI et al (2012) Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 13:52–59

    Article  CAS  Google Scholar 

  111. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  112. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Article  CAS  PubMed  Google Scholar 

  113. van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413

    Article  PubMed  Google Scholar 

  114. Soler D, Genescà A, Arnedo G et al (2005) Telomere dysfunction drives chromosomal instability in human mammary epithelial cells. Genes Chromosomes Cancer 44:339–350

    Article  CAS  PubMed  Google Scholar 

  115. Tusell L, Pampalona J, Soler D et al (2010) Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans 38:1698–1703

    Article  CAS  PubMed  Google Scholar 

  116. Tusell L, Soler D, Agostini M et al (2008) The number of dysfunctional telomeres in a cell: one amplifies; more than one translocate. Cytogenet Genome Res 122:315–325

    Article  CAS  PubMed  Google Scholar 

  117. Pampalona J, Soler D, Genescà A, Tusell L (2010) Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosomes Cancer 49:368–378

    CAS  PubMed  Google Scholar 

  118. Pampalona J, Roscioli E, Silkworth WT et al (2016) Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLoS One 11:e0147420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Zhang C-Z, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maciejowski J, Li Y, Bosco N et al (2015) Chromothripsis and Kataegis induced by telomere crisis. Cell 163:1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roberts SA, Sterling J, Thompson C et al (2012) Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46:424–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dynek JN, Smith S (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304:97–100

    Article  CAS  PubMed  Google Scholar 

  124. Hsiao SJ, Smith S (2008) Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90:83–92

    Article  CAS  PubMed  Google Scholar 

  125. Canudas S, Smith S (2009) Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol 187:165–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Canudas S, Houghtaling BR, Kim JY et al (2007) Protein requirements for sister telomere association in human cells. EMBO J 26:4867–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484–1487

    Article  CAS  PubMed  Google Scholar 

  128. Bisht KK, Daniloski Z, Smith S (2013) SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres. J Cell Sci 126:3493–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bisht KK, Dudognon C, Chang WG et al (2012) GDP-mannose-4,6-dehydratase is a cytosolic partner of tankyrase 1 that inhibits its poly(ADP-ribose) polymerase activity. Mol Cell Biol 32:3044–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim MK, Smith S (2014) Persistent telomere cohesion triggers a prolonged anaphase. Mol Biol Cell 25:30–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Yalon M, Gal S, Segev Y et al (2004) Sister chromatid separation at human telomeric regions. J Cell Sci 117:1961–1970

    Article  CAS  PubMed  Google Scholar 

  132. Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22:42–49

    Article  PubMed  CAS  Google Scholar 

  133. Johnson AA, Akman K, Calimport SRG et al (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15:483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Maegawa S, Hinkal G, Kim HS et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  136. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  137. Weidner CI, Wagner W (2014) The epigenetic tracks of aging. Biol Chem 395:1307–1314

    Article  CAS  PubMed  Google Scholar 

  138. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418

    Article  CAS  PubMed  Google Scholar 

  139. Jin C, Li J, Green CD et al (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14:161–172

    Article  CAS  PubMed  Google Scholar 

  140. Guarente L (2011) Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90

    Article  CAS  PubMed  Google Scholar 

  141. Brown K, Xie S, Qiu X et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kanfi Y, Peshti V, Gil R et al (2010) SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9:162–173

    Article  CAS  PubMed  Google Scholar 

  143. Kawahara TLA, Michishita E, Adler AS et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nogueiras R, Habegger KM, Chaudhary N et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oberdoerffer P, Michan S, McVay M et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang R-H, Sengupta K, Li C et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14:312–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhong L, D’Urso A, Toiber D et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pegoraro G, Misteli T (2009) The central role of chromatin maintenance in aging. Aging (Albany NY) 1:1017–1022

    Article  CAS  Google Scholar 

  150. Shumaker DK, Dechat T, Kohlmaier A et al (2006) Mutant nuclear lamin a leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103:8703–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tsurumi A, Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics 7:680–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Magalhães JP, Budovsky A, Lehmann G et al (2009) The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8:65–72

    Article  PubMed  CAS  Google Scholar 

  153. Ugalde AP, Español Y, López-Otín C (2011) Micromanaging aging with miRNAs: new messages from the nuclear envelope. Nucleus 2:549–555

    Article  PubMed  Google Scholar 

  154. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guppy BJ, McManus KJ (2015) Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells. Genetics 199:423–433

    Article  PubMed  CAS  Google Scholar 

  156. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309

    Article  CAS  PubMed  Google Scholar 

  157. Gonzalo S, Jaco I, Fraga MF et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424

    Article  CAS  PubMed  Google Scholar 

  158. Cheung P, Tanner KG, Cheung WL et al (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915

    Article  CAS  PubMed  Google Scholar 

  159. Inoue A, Hyle J, Lechner MS, Lahti JM (2008) Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion. Mutat Res 657:48–55

    Article  CAS  PubMed  Google Scholar 

  160. Shimura M, Toyoda Y, Iijima K et al (2011) Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation. J Cell Biol 194:721–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fatoba ST, Okorokov AL (2011) Human SIRT1 associates with mitotic chromatin and contributes to chromosomal condensation. Cell Cycle 10:2317–2322

    Article  CAS  PubMed  Google Scholar 

  162. Vaquero A, Scher MB, Lee DH et al (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim H-S, Vassilopoulos A, Wang R-H et al (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Choi B-S, Park JE, Jang C-Y (2014) Sirt3 controls chromosome alignment by regulating spindle dynamics during mitosis. Biochem Biophys Res Commun 444:662–669

    Article  CAS  PubMed  Google Scholar 

  165. Ardestani PM, Liang F (2014) Sub-cellular localization, expression and functions of Sirt6 during the cell cycle in HeLa cells. Nucleus 3:442–451

    Article  Google Scholar 

  166. Hudson RS, Yi M, Esposito D et al (2012) MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 40:3689–3703

    Article  CAS  PubMed  Google Scholar 

  167. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105:13421–13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mäki-Jouppila JHE, Pruikkonen S, Tambe MB et al (2015) MicroRNA let-7b regulates genomic balance by targeting Aurora B kinase. Mol Oncol 9:1056–1070

    Article  PubMed  CAS  Google Scholar 

  169. Morimoto RI, Cuervo AM (2009) Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J Gerontol A Biol Sci Med Sci 64:167–170

    Article  PubMed  CAS  Google Scholar 

  170. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215

    Article  CAS  PubMed  Google Scholar 

  171. Swindell WR, Masternak MM, Kopchick JJ et al (2009) Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech Ageing Dev 130:393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fargnoli J, Kunisada T, Fornace AJ et al (1990) Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci U S A 87:846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hall DM, Xu L, Drake VJ et al (2000) Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol 89:749–759

    CAS  PubMed  Google Scholar 

  174. Pahlavani MA, Harris MD, Moore SA et al (1995) The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys. Exp Cell Res 218:310–318

    Article  CAS  PubMed  Google Scholar 

  175. Heydari AR, You S, Takahashi R et al (2000) Age-related alterations in the activation of heat shock transcription factor 1 in rat hepatocytes. Exp Cell Res 256:83–93

    Article  CAS  PubMed  Google Scholar 

  176. Locke M, Tanguay RM (1996) Diminished heat shock response in the aged myocardium. Cell Stress Chaperones 1:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hsu A-L, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  CAS  PubMed  Google Scholar 

  178. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139

    Article  CAS  PubMed  Google Scholar 

  180. Jahngen JH, Lipman RD, Eisenhauer DA et al (1990) Aging and cellular maturation cause changes in ubiquitin-eye lens protein conjugates. Arch Biochem Biophys 276:32–37

    Article  CAS  PubMed  Google Scholar 

  181. Min J-N, Whaley RA, Sharpless NE et al (2008) CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by Altered protein quality control. Mol Cell Biol 28:4018–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 19:644–646

    CAS  PubMed  Google Scholar 

  183. Keller JN, Huang FF, Markesbery WR (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156

    Article  CAS  PubMed  Google Scholar 

  184. Li W, Gao B, Lee S-M et al (2007) RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. Dev Cell 12:235–246

    Article  CAS  PubMed  Google Scholar 

  185. Yun C, Stanhill A, Yang Y et al (2008) Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:7094–7099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Terman A (1995) The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 41(Suppl 2):319–326

    PubMed  Google Scholar 

  188. Terman A, Brunk UT (1998) Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 104:277–291

    Article  CAS  PubMed  Google Scholar 

  189. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3:295–299

    Article  CAS  PubMed  Google Scholar 

  190. Kiffin R, Kaushik S, Zeng M et al (2007) Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 120:782–791

    Article  CAS  PubMed  Google Scholar 

  191. Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lindner AB, Madden R, Demarez A et al (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105:3076–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Amen T, Kaganovich D (2015) Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci 72:401–415

    Article  CAS  PubMed  Google Scholar 

  194. Zhou C, Slaughter BD, Unruh JR et al (2014) Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159:530–542

    Article  CAS  PubMed  Google Scholar 

  195. Chen Y-J, Lai K-C, Kuo H-H et al (2014) HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 88:1711–1723

    Article  CAS  PubMed  Google Scholar 

  196. O’Regan L, Sampson J, Richards MW et al (2015) Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression. J Cell Biol 209:349–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Basto R, Gergely F, Draviam VM et al (2007) Hsp90 is required to localise cyclin B and Msps/ch-TOG to the mitotic spindle in Drosophila and humans. J Cell Sci 120:1278–1287

    Article  CAS  PubMed  Google Scholar 

  198. Lange BM, Bachi A, Wilm M, González C (2000) Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J 19:1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Davies AE, Kaplan KB (2010) Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites. J Cell Biol 189:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu XS, Song B, Tang J et al (2012) Plk1 phosphorylates Sgt1 at the kinetochores to promote timely kinetochore-microtubule attachment. Mol Cell Biol 32:4053–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Niikura Y, Ohta S, Vandenbeldt KJ et al (2006) 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene 25:4133–4146

    Article  CAS  PubMed  Google Scholar 

  202. Vihervaara A, Sergelius C, Vasara J et al (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lu M, Boschetti C, Tunnacliffe A (2015) Long term Aggresome accumulation leads to DNA damage, p53-dependent cell cycle arrest, and steric interference in mitosis. J Biol Chem 290:27986–28000

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Eskelinen E-L, Prescott AR, Cooper J et al (2002) Inhibition of autophagy in mitotic animal cells. Traffic 3:878–893

    Article  CAS  PubMed  Google Scholar 

  205. Liu L, Xie R, Nguyen S et al (2009) Robust autophagy/mitophagy persists during mitosis. Cell Cycle 8:1616–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fuchs M, Luthold C, Guilbert SM et al (2015) A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis. PLoS Genet 11:e1005582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Pohl C (2009) Dual control of cytokinesis by the ubiquitin and autophagy pathways. Autophagy 5:561–562

    Article  CAS  PubMed  Google Scholar 

  208. Mathew R, Kongara S, Beaudoin B et al (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Frémont S, Gérard A, Galloux M et al (2013) Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep 14:364–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13:189–203

    CAS  PubMed  Google Scholar 

  211. Tang Y-C, Amon A (2013) Gene copy-number alterations: a cost-benefit analysis. Cell 152:394–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Santaguida S, Amon A (2015) Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16:473–485

    Article  CAS  PubMed  Google Scholar 

  213. Stingele S, Stoehr G, Peplowska K et al (2012) Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol 8:608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Thorburn RR, Gonzalez C, Brar GA et al (2013) Aneuploid yeast strains exhibit defects in cell growth and passage through START. Mol Biol Cell 24:1274–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Williams BR, Prabhu VR, Hunter KE et al (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sheltzer JM, Amon A (2011) The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 27:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sheltzer JM, Torres EM, Dunham MJ, Amon A (2012) Transcriptional consequences of aneuploidy. Proc Natl Acad Sci U S A 109:12644–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Torres EM, Sokolsky T, Tucker CM et al (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924

    Article  CAS  PubMed  Google Scholar 

  219. Blank HM, Sheltzer JM, Meehl CM, Amon A (2015) Mitotic entry in the presence of DNA damage is a widespread property of aneuploidy in yeast. Mol Biol Cell 26:1440–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhu J, Pavelka N, Bradford WD et al (2012) Karyotypic determinants of chromosome instability in Aneuploid budding yeast. PLoS Genet 8:e1002719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Dephoure N, Hwang S, O’Sullivan C et al (2014) Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3:e03023

    Article  PubMed  PubMed Central  Google Scholar 

  222. Donnelly N, Passerini V, Dürrbaum M et al (2014) HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J 33:2374–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Stingele S, Stoehr G, Storchová Z (2013) Activation of autophagy in cells with abnormal karyotype. Autophagy 9:246–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tang Y-C, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144:499–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Torres EM, Dephoure N, Panneerselvam A et al (2010) Identification of aneuploidy-tolerating mutations. Cell 143:71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jenkins EC, Ye L, Krinsky-McHale SJ et al (2016) Telomere longitudinal shortening as a biomarker for dementia status of adults with down syndrome. Am J Med Genet B Neuropsychiatr Genet 171:169–174

    Article  CAS  Google Scholar 

  228. Wenger SL, Hansroth J, Shackelford AL (2014) Decreased telomere length in metaphase and interphase cells from newborns with trisomy 21. Gene 542:87

    Article  CAS  PubMed  Google Scholar 

  229. Horvath S, Garagnani P, Bacalini MG et al (2015) Accelerated epigenetic aging in down syndrome. Aging Cell 14:491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Nicholson JM, Macedo JC, Mattingly AJ et al (2015) Chromosome mis-segregation and cytokinesis failure in trisomic human cells. eLife 4:e05068

    Article  PubMed Central  CAS  Google Scholar 

  231. Sheltzer JM, Blank HM, Pfau SJ et al (2011) Aneuploidy drives genomic instability in yeast. Science 333:1026–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Janssen A, van der Burg M, Szuhai K et al (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898

    Article  CAS  PubMed  Google Scholar 

  233. Lee K, Kenny AE, Rieder CL (2010) P38 mitogen-activated protein kinase activity is required during mitosis for timely satisfaction of the mitotic checkpoint but not for the fidelity of chromosome segregation. Mol Biol Cell 21:2150–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Passerini V, Ozeri-Galai E, de Pagter MS et al (2016) The presence of extra chromosomes leads to genomic instability. Nat Commun 7:10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lamm N, Ben-David U, Golan-Lev T et al (2016) Genomic instability in human pluripotent stem cells arises from replicative stress and chromosome condensation defects. Cell Stem Cell 18:253–261

    Article  CAS  PubMed  Google Scholar 

  236. Oromendia AB, Amon A (2014) Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech 7:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Santaguida S, Vasile E, White E, Amon A (2015) Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev 29:2010–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kim G, Meriin AB, Gabai VL et al (2012) The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Baker DJ, Dawlaty MM, Wijshake T et al (2013) Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 15:96–102

    Article  CAS  PubMed  Google Scholar 

  240. Baker DJ, Jeganathan KB, Cameron JD et al (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749

    Article  CAS  PubMed  Google Scholar 

  241. Malureanu LA, Wijshake T, Baker DJ et al (2012) Reduced life- and Healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet 8:e1003138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Ricke RM, van Deursen JM (2013) Aneuploidy in health, disease, and aging. J Cell Biol 201:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Hanks S, Coleman K, Reid S et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161

    Article  CAS  PubMed  Google Scholar 

  244. Suijkerbuijk SJE, van Osch MHJ, Bos FL et al (2010) Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res 70:4891–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Baker DJ, Jeganathan KB, Malureanu L et al (2006) Early aging–associated phenotypes in Bub3/Rae1 haploinsufficient mice. J Cell Biol 172:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Faggioli F, Vijg J, Montagna C (2011) Chromosomal aneuploidy in the aging brain. Mech Ageing Dev 132:429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Childs BG, Baker DJ, Kirkland JL et al (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15:1139–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bakker B, van den Bos H, Lansdorp PM, Foijer F (2015) How to count chromosomes in a cell: an overview of current and novel technologies. BioEssays 37:570–577

    Article  PubMed  Google Scholar 

  249. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Postnikoff SDL, Harkness TAA (2012) Mechanistic insights into aging, cell-cycle progression, and stress response. Front Physiol 3:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Laoukili J, Kooistra MRH, Brás A et al (2005) FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7:126–136

    Article  CAS  PubMed  Google Scholar 

  252. Laoukili J, Stahl M, Medema RH (2007) FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 1775:92–102

    CAS  PubMed  Google Scholar 

  253. Wang X, Quail E, Hung NJ et al (2001) Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc Natl Acad Sci U S A 98:11468–11473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kalinichenko VV, Gusarova GA, Tan Y et al (2003) Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J Biol Chem 278:37888–37894

    Article  CAS  PubMed  Google Scholar 

  255. Foijer F, DiTommaso T, Donati G et al (2013) Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. Proc Natl Acad Sci U S A 110:2928–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Logarinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Macedo, J.C., Vaz, S., Logarinho, E. (2017). Mitotic Dysfunction Associated with Aging Hallmarks. In: Gotta, M., Meraldi, P. (eds) Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-319-57127-0_7

Download citation

Publish with us

Policies and ethics