Skip to main content

Dividing with Extra Centrosomes: A Double Edged Sword for Cancer Cells

  • Chapter
  • First Online:
Cell Division Machinery and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1002))

Abstract

The presence of supernumerary centrosomes is a hallmark of human tumours. Recent work in animal models suggests that extra centrosomes are not just bystanders in cancer but can accelerate tumourigenesis in the absence of the tumour suppressor p53. Centrosome amplification could indeed actively participate in tumour progression through the induction of chromosome instability, disruption of tissue architecture and promoting cell invasion. Paradoxically, however, centrosome amplification is rather poorly tolerated in normal cells and there are several hurdles cells need to overcome in order to efficiently proliferate in the presence of extra centrosomes. Here, we review the adaptation mechanisms that allow cells to efficiently divide in the presence of extra centrosomes and how these could be exploited to develop selective cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463

    Article  CAS  PubMed  Google Scholar 

  2. Kim S, Dynlacht BD (2013) Assembling a primary cilium. Curr Opin Cell Biol 25:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agircan FG, Schiebel E, Mardin BR (2014) Separate to operate: control of centrosome positioning and separation. Philos Trans R Soc Lond Ser B Biol Sci 369:20130461

    Article  CAS  Google Scholar 

  4. Fu J, Hagan IM, Glover DM (2015) The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 7:a015800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. doi:10.1038/ncb2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Supplement 1):1–84

    Article  PubMed  Google Scholar 

  7. Bignold LP, Coghlan BLD, Jersmann HPA (2006) Hansemann, Boveri, chromosomes and the gametogenesis-related theories of tumours. Cell Biol Int 30:640–644

    Article  CAS  PubMed  Google Scholar 

  8. Pickett-Heaps J (1971) The autonomy of the centriole: fact or fallacy? Cytobios 3:205–214

    Google Scholar 

  9. Dietz R (1966) The dispensability of the centrioles in the spermatocyte division of pales ferruginea (Nematocera). In: Darlington CD, Lewis KR (eds) Chromosomes today. Oliver and Boyd, London, pp 161–166

    Google Scholar 

  10. Cavazza T, Vernos I (2015) The RanGTP pathway: from nucleo-cytoplasmic transport to spindle assembly and beyond. Front Cell Dev Biol 3:82

    PubMed  Google Scholar 

  11. Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A et al (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–425

    Article  CAS  PubMed  Google Scholar 

  12. Karsenti E, Newport J, Kirschner M (1984) Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol 99:47s–54s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    Article  CAS  PubMed  Google Scholar 

  14. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A et al (2006) Flies without centrioles. Cell 125:1375–1386

    Article  CAS  PubMed  Google Scholar 

  15. Debec A (1978) Haploid cell cultures of Drosophila melanogaster. Nature 274:255–256

    Article  CAS  PubMed  Google Scholar 

  16. Sir J-H, Pütz M, Daly O, Morrison CG, Dunning M, Kilmartin JV et al (2013) Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J Cell Biol 203:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15:2199–2207

    Article  CAS  PubMed  Google Scholar 

  18. Habedanck R, Stierhof Y-D, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    Article  CAS  PubMed  Google Scholar 

  19. Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A et al (2015) Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7:1122–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond Ser B Biol Sci 369:20130467

    Article  CAS  Google Scholar 

  22. Boveri T (1888) Zellen-studien 2: die befrunchtung und telung des eies von Ascaris megalocephala. Jenaische Zeitschr Med Naturw 22:685–882

    Google Scholar 

  23. Boveri T. Uber die befunchtung der eier von Ascaris megalocephala. Sitz Ber Ges Morph Phys Munchen. 1887;3:71–80.

    Google Scholar 

  24. Hansemann D (1890) Ueber asymmetrische zelltheilung in epithelkrebsen und deren biologische bedeutung. Arch Für Pathol Anat Und Physiol Und Für Klin Med 119:299–326

    Article  Google Scholar 

  25. Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R et al (2005) Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 19:1192–1197

    Article  CAS  PubMed  Google Scholar 

  26. Hsu L-C, Kapali M, DeLoia JA, Gallion HH (2005) Centrosome abnormalities in ovarian cancer. Int J Cancer 113:746–751

    Article  CAS  PubMed  Google Scholar 

  27. Krämer A, Neben K, Ho AD (2005) Centrosome aberrations in hematological malignancies. Cell Biol Int 29:375–383

    Article  PubMed  CAS  Google Scholar 

  28. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A 95:2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825

    Article  CAS  PubMed  Google Scholar 

  30. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P et al (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985

    CAS  PubMed  Google Scholar 

  31. Sato N, Mizumoto K, Nakamura M, Nakamura K, Kusumoto M, Niiyama H et al (1999) Centrosome abnormalities in pancreatic ductal carcinoma. Clin Cancer Res 5:963–970

    CAS  PubMed  Google Scholar 

  32. D’Assoro AB, Barrett SL, Folk C, Negron VC, Boeneman K, Busby R et al (2002) Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75:25–34

    Article  PubMed  Google Scholar 

  33. Pihan GA, Wallace J, Zhou Y, Doxsey SJ (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63:1398–1404

    CAS  PubMed  Google Scholar 

  34. Segat D, Cassaro M, Dazzo E, Cavallini L, Romualdi C, Salvador R et al (2010) Pericentriolar material analyses in normal esophageal mucosa, Barrett’s metaplasia and adenocarcinoma. Histol Histopathol 25:551–560

    PubMed  Google Scholar 

  35. Yamamoto Y, Matsuyama H, Furuya T, Oga A, Yoshihiro S, Okuda M et al (2004) Centrosome hyperamplification predicts progression and tumor recurrence in bladder cancer. Clin Cancer Res 10:6449–6455

    Article  CAS  PubMed  Google Scholar 

  36. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof Y-D, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202

    Article  CAS  PubMed  Google Scholar 

  37. Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serçin Ö, Larsimont J-C, Karambelas AE, Marthiens V, Moers V, Boeckx B et al (2015) Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18:100

    Article  PubMed  CAS  Google Scholar 

  39. Coelho PA, Bury L, Shahbazi MN, Liakath-Ali K, Tate PH, Wormald S et al (2015) Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5:150209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vitre B, Holland AJ, Kulukian A, Shoshani O, Hirai M, Wang Y et al (2015) Chronic centrosome amplification without tumorigenesis. Proc Natl Acad Sci U S A 112:E6321–E6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4:e6564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mahjoub MR, Stearns T (2012) Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol 22:1628–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT et al (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krzywicka-Racka A, Sluder G (2011) Repeated cleavage failure does not establish centrosome amplification in untransformed human cells. J Cell Biol 194:199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  CAS  PubMed  Google Scholar 

  48. Holland AJ, Fachinetti D, Zhu Q, Bauer M, Verma IM, Nigg EA et al (2012) The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 26:2684–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ganem NJ, Cornils H, Chiu S-Y, O’Rourke KP, Arnaud J, Yimlamai D et al (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158:833–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bolgioni AF, Ganem NJ (2015) The interplay between centrosomes and the hippo tumor suppressor pathway. Chromosom Res 24:93–104

    Article  CAS  Google Scholar 

  51. Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147:1009–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94:549–556

    Article  CAS  PubMed  Google Scholar 

  53. Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11:18–21

    Article  CAS  PubMed  Google Scholar 

  54. Godinho SA, Kwon M, Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28:85–98

    Article  CAS  PubMed  Google Scholar 

  55. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307:127–129

    Article  CAS  PubMed  Google Scholar 

  57. Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S et al (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2:33ra38

    Article  PubMed  CAS  Google Scholar 

  58. Breuer M, Kolano A, Kwon M, Li C-C, Tsai T-F, Pellman D et al (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191:1251–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fielding AB, Dobreva I, McDonald PC, Foster LJ, Dedhar S (2008) Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. J Cell Biol 180:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sabino D, Gogendeau D, Gambarotto D, Nano M, Pennetier C, Dingli F et al (2015) Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 25:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maresca TJ, Salmon ED (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123:825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nezi L, Musacchio A (2009) Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 21:785–795

    Article  CAS  PubMed  Google Scholar 

  63. Weaver BAA, Cleveland DW (2005) Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 8:7–12

    Article  CAS  PubMed  Google Scholar 

  64. Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22:R966–R980

    Article  CAS  PubMed  Google Scholar 

  65. Yang Z, Loncarek J, Khodjakov A, Rieder CL (2008) Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10:748–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lambert RA (1913) Comparative studies upon cancer cells and normal cells: II. The character of growth in vitro with special reference to cell division. J Exp Med 17:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ (1991) Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc Natl Acad Sci U S A 88:6427–6431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL (1997) The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 110(Pt 4):421–429

    CAS  PubMed  Google Scholar 

  69. Ciferri C, Musacchio A, Petrovic A (2007) The Ndc80 complex: hub of kinetochore activity. FEBS Lett 581:2862–2869

    Article  CAS  PubMed  Google Scholar 

  70. Silljé HHW, Nagel S, Körner R, Nigg EA (2006) HURP is a ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16:731–742

    Article  PubMed  CAS  Google Scholar 

  71. Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173:879–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Logarinho E, Maffini S, Barisic M, Marques A, Toso A, Meraldi P et al (2012) CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nat Cell Biol 14:295–303

    Article  CAS  PubMed  Google Scholar 

  73. Mitchison TJ (1992) Actin based motility on retraction fibers in mitotic PtK2 cells. Cell Motil Cytoskeleton 22:135–151

    Article  CAS  PubMed  Google Scholar 

  74. Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita J-B et al (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  PubMed  CAS  Google Scholar 

  75. Fink J, Carpi N, Betz T, Bétard A, Chebah M, Azioune A et al (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13:771–778

    Article  CAS  PubMed  Google Scholar 

  76. Kwon M, Bagonis M, Danuser G, Pellman D (2015) Direct microtubule-binding by myosin-10 orients centrosomes toward retraction fibers and subcortical actin clouds. Dev Cell 34:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosenblatt J, Cramer LP, Baum B, McGee KM (2004) Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117:361–372

    Article  CAS  PubMed  Google Scholar 

  78. Krämer A, Maier B, Bartek J (2011) Centrosome clustering and chromosomal (in)stability: a matter of life and death. Mol Oncol 5:324–335

    Article  PubMed  CAS  Google Scholar 

  79. Marthiens V, Piel M, Basto R (2012) Never tear us apart--the importance of centrosome clustering. J Cell Sci 125:3281–3292

    Article  CAS  PubMed  Google Scholar 

  80. Pines J (2011) Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 12:427–438

    Article  CAS  PubMed  Google Scholar 

  81. Drosopoulos K, Tang C, Chao WCH, Linardopoulos S (2014) APC/C is an essential regulator of centrosome clustering. Nat Commun 5:3686

    Article  CAS  PubMed  Google Scholar 

  82. Endow SA, Komma DJ (1998) Assembly and dynamics of an anastral:astral spindle: the meiosis II spindle of Drosophila oocytes. J Cell Sci 111(Pt 17):2487–2495

    CAS  PubMed  Google Scholar 

  83. Iwao Y, Murakawa T, Yamaguchi J, Yamashita M (2002) Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Develop Growth Differ 44:489–499

    Article  CAS  Google Scholar 

  84. Mikeladze-Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L et al (2012) Analysis of centriole elimination during C. elegans oogenesis. Development 139:1670–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim DY, Roy R (2006) Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. J Cell Biol 174:751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chiba S, Okuda M, Mussman JG, Fukasawa K (2000) Genomic convergence and suppression of centrosome hyperamplification in primary p53−/− cells in prolonged culture. Exp Cell Res 258:310–321

    Article  CAS  PubMed  Google Scholar 

  87. Gräf R, Euteneuer U, Ho T-H, Rehberg M (2003) Regulated expression of the centrosomal protein DdCP224 affects microtubule dynamics and reveals mechanisms for the control of supernumerary centrosome number. Mol Biol Cell 14:4067–4074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zyss D, Gergely F (2009) Centrosome function in cancer: guilty or innocent? Trends Cell Biol 19:334–346

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Jin F, Higgins R, McKnight K (2014) The current view for the silencing of the spindle assembly checkpoint. Cell Cycle 13:1694–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cimini D (1786) Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta 2008:32–40

    Google Scholar 

  91. Janssen A, van der Burg M, Szuhai K, Kops GJPL, Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898

    Article  CAS  PubMed  Google Scholar 

  92. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weaver BAA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    Article  CAS  PubMed  Google Scholar 

  97. Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13:501–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15:731–740

    Article  CAS  PubMed  Google Scholar 

  99. Thompson SL, Compton DA (2011) Chromosomes and cancer cells. Chromosom Res 19:433–444

    Article  Google Scholar 

  100. Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14:R674–R685

    Article  CAS  PubMed  Google Scholar 

  101. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  CAS  PubMed  Google Scholar 

  102. Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18:1209–1214

    Article  CAS  PubMed  Google Scholar 

  103. Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129

    Article  CAS  PubMed  Google Scholar 

  104. Reina J, Gonzalez C (2014) When fate follows age: unequal centrosomes in asymmetric cell division. Philos Trans R Soc Lond Ser B Biol Sci 369:20130466

    Article  CAS  Google Scholar 

  105. Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374

    Article  CAS  PubMed  Google Scholar 

  106. Kulukian A, Holland AJ, Vitre B, Naik S, Cleveland DW, Fuchs E (2015) Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc Natl Acad Sci U S A 112:E6311–E6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kusner EJ, Ferro LS, Yu Z, Bautch VL (2016) Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol Biol Cell 27(12):1911–1920

    Article  CAS  Google Scholar 

  108. Karna P, Rida PCG, Pannu V, Gupta KK, Dalton WB, Joshi H et al (2011) A novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ 18:632–644

    Article  CAS  PubMed  Google Scholar 

  109. Rebacz B, Larsen TO, Clausen MH, Rønnest MH, Löffler H, Ho AD et al (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350

    Article  CAS  PubMed  Google Scholar 

  110. Raab MS, Breitkreutz I, Anderhub S, Rønnest MH, Leber B, Larsen TO et al (2012) GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res 72:5374–5385

    Article  CAS  PubMed  Google Scholar 

  111. Castiel A, Visochek L, Mittelman L, Dantzer F, Izraeli S, Cohen-Armon M (2011) A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. BMC Cancer 11:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tong WM, Yang YG, Cao WH, Galendo D, Frappart L, Shen Y et al (2007) Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 26:3857–3867

    Article  CAS  PubMed  Google Scholar 

  113. Castiel A, Visochek L, Mittelman L, Zilberstein Y, Dantzer F, Izraeli S et al (2013) Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells. J Vis Exp (78):e50568

    Google Scholar 

  114. Pannu V, Rida PCG, Celik B, Turaga RC, Ogden A, Cantuaria G et al (2014) Centrosome-declustering drugs mediate a two-pronged attack on interphase and mitosis in supercentrosomal cancer cells. Cell Death Dis 5:e1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li Y, Lu W, Chen D, Boohaker RJ, Zhai L, Padmalayam I et al (2015) KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol Ther 16:1316–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu J, Mikule K, Wang W, Su N, Petteruti P, Gharahdaghi F et al (2013) Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 8:2201–2208

    Article  CAS  PubMed  Google Scholar 

  117. Watts CA, Richards FM, Bender A, Bond PJ, Korb O, Kern O et al (2013) Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol 20:1399–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Hefin Rhys and members of the Godinho laboratory, Teresa Arnandis, Pedro Monteiro and Sophie Adams, for critically reading this manuscript. We apologise for the many authors whose work we were unable to cite due to space limitations. A.D.R. is supported by a CRUK PhD fellowship. S.A.G. is supported by the Higher Education Funding Council for England and a Medical Research Council Grant. S.A.G. is a Lister Institute Prize Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana A. Godinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rhys, A.D., Godinho, S.A. (2017). Dividing with Extra Centrosomes: A Double Edged Sword for Cancer Cells. In: Gotta, M., Meraldi, P. (eds) Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-319-57127-0_3

Download citation

Publish with us

Policies and ethics