Skip to main content

Experimental and Simulative Modeling of Drilling Processes for the Compensation of Thermal Effects

  • Chapter
  • First Online:
Thermal Effects in Complex Machining Processes

Abstract

This work focuses on the prediction of phase transformations and shape deviations for drilling of demonstrator workpieces. In a first step, a 2D chip formation simulation was developed with all physical effects. Based on this simulation a simplified workpiece geometry with only one drilling hole was 3D modeled and tested for its predictive capability of phase transformations and shape deviations. Therefore, the feed rate, the rotation of the drilling tool and the material removal were considered for the process kinematics. Using these results the modeling approach was optimized and transferred into a simulation model with a demonstrator workpiece to minimize shape deviations and control phase transformations using different compensation strategies. The simulations were validated by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Jourdi, A.: Adaption des Trockenbohrens über thermomechanische Modellierung zur Erhöhung der Fertigungsgenauigkeit. Dissertation, Technische Universität Berlin (2012)

    Google Scholar 

  2. Autentieth H.: Numerische Analyse der Mikrozerspanung am Beispiel von normalisiertem C45E. Dissertation, Universität Karlsruhe (TH) (2010)

    Google Scholar 

  3. Bartek, T., Menzel, A.: A finite deformation framework for martensitic phase transformations interacting with plasticity based on representative deformation directions. submitted for publication

    Google Scholar 

  4. Bollig, P., Köhler, D., Zanger, F., Schulze, V.: Effects of different levels of abstraction simulating heat sources in FEM considering drilling. Procedia CIRP 46, 115–118 (2016)

    Article  Google Scholar 

  5. Bollig, P., Faltin, C., Schießl, R., Schneider, J., Maas, U., Schulze, V.: Considering the influence of minimum quantity lubrication for modelling changes in temperature, forces and phase transformations during machining. Procedia CIRP 31, 142–147 (2015)

    Article  Google Scholar 

  6. Galanis, N.I., Manolakos, D.E., Vaxevanidis, N.M.: Comparison between dry and wet machining of stainless steel. In: Proceedings of the 3rd International Conference on Manufacturing Engineering, pp. 91–98 (2008)

    Google Scholar 

  7. Gulpak, M., Sölter, J.: Development and validation of a hybrid model for the prediction of shape deviations in dry machining processes. Procedia CIRP 31, 346–351 (2015)

    Article  Google Scholar 

  8. Maas, U.: Detailed numerical simulation of chemically reacting flows. In: Proceedings of the International Symposium on Computational Fluid Dynamics p. 741 (1991)

    Google Scholar 

  9. Michna, J.: Numerische und experimentelle Untersuchung zerspanungsbedingter Gefügeumwandlungen und Modellierung des thermo-mechanischen Lastkollektivs beim Bohren von 42CrMo4. Dissertation, Karlsruher Institut für Technologie (KIT) (2014)

    Google Scholar 

  10. Mioković, T.: Analyse des Umwandlungsverhaltens bei ein-und mehrfacher Kurzheithärtung bzw, Läserstrahlhärtung des Stahls 42CrMo4. Dissertation, Universität Karlsruhe (TH), (2005)

    Google Scholar 

  11. Pabst, R.: Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung Dissertation, Karlsruher Institut für Technologie (KIT), (2008)

    Google Scholar 

  12. Schulze, V., Zanger, F.: Numerical analysis of the influence of Johnson-Cook material parameters on the surface integrity of Ti-6A-4V. Procedia Eng. 19, 306–311 (2011)

    Article  Google Scholar 

  13. Schulze, V., Michna, J., Schneider, J., Gumbsch, P.: Modelling of cutting induced surface phase transformations considering friction effects. Procedia Eng. 19, 331–336 (2011)

    Article  Google Scholar 

  14. Schulze, V., Michna, J., Zanger, F., Pabst, R.: Modeling the process-induced modifications of the microstructure of workpiece surface zones in cutting processes. Adv. Mater. Res. 223, 371–380 (2011)

    Article  Google Scholar 

  15. Schulze, V., Zanger, F., Michna, J., Lang, F.: 3D-FE-Modelling of the drilling process—prediction of phase transformations at the surface layer. Procedia CIRP 8, 233–238 (2013)

    Google Scholar 

  16. Schulze, V., Michna, J., Zanger, F., Faltin, C., Maas, U., Schneider, J.: Influence of cutting parameters, tool coatings and friction on the process heat in cutting processes and phase transformations in workpiece surface layers. J. Heat Treat. Mater. 68, 22–31 (2013)

    Article  Google Scholar 

  17. Schulze, V., Uhlmann, E., Mahnken, R., Menzel, A., Biermann, B., Zabel, A., Bollig, P., Ivanov, I.M., Cheng, C., Holtermann, R., Bartel, T.: Evaluation of different approaches for modeling phase transformations in machining simulation. Prod. Eng. Res. Devel. 9(4), 437–449 (2015)

    Article  Google Scholar 

  18. Schüttenberg, S., Hunkel, M., Fritsching, U., Zoch, H.-W: Controlled quenching of steel parts in fluid jet fields. In: 15th IFHTSE and SMT 20, pp. 25–29 (2006)

    Google Scholar 

  19. Tomé, C.N., Canova, G.R., Kocks, U.F., Christodoulou, N., Jonas, J.: The relationship between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall. 32(10), 1637–1653 (1984)

    Article  Google Scholar 

  20. Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: FEM modeling of hard turning with consideration of viscoplastic asymmetry and phase transformation. J. Mach. Eng. 13(1), 80–92 (2013)

    Google Scholar 

  21. Voce, E.: The relationship between stress and strain for homogeneous deformation. J. Inst. Met 74, 537–562 (1948)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the “Deutsche Forschungsgemeinschaft DFG” for the support of the priority program 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bollig, P. et al. (2018). Experimental and Simulative Modeling of Drilling Processes for the Compensation of Thermal Effects. In: Biermann, D., Hollmann, F. (eds) Thermal Effects in Complex Machining Processes. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57120-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57120-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57119-5

  • Online ISBN: 978-3-319-57120-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics