Skip to main content

Modeling of Orthogonal Metal Cutting Using Adaptive Smoothed Particle Hydrodynamics

  • Chapter
  • First Online:
Thermal Effects in Complex Machining Processes

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

This contribution provides an overview over different aspects of the numerical modeling of orthogonal metal cutting using adaptive Smoothed Particle Hydrodynamics. First, the basic principle of the employed spatial discretization technique and its application to the equations of solid continuum mechanics are introduced. Furthermore, a brief description is given of the most important extensions to this meshless Lagrangian simulation method that are necessary to correctly model the process of metal cutting, e.g. a variable resolution scheme. Here, references to in-depth literature are provided where necessary. Second, the applicability of the introduced enhanced discretization technique to model cutting processes is shown. To that end, the results of orthogonal cutting simulations for a steel of type AISI 1045 are analyzed in terms of chip formation, stress distribution as well as the cutting force, and they are compared to experimentally obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, Oxford (2013)

    MATH  Google Scholar 

  2. Monaghan, J.J.: Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pasimodo. http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_en.php

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  5. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  6. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  7. Liu, M., Liu, G.: Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Method E 17, 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burshtein, A.I.: Introduction to Thermodynamics and Kinetic Theory of Matter. Wiley-VCH, Berlin (2005)

    Book  Google Scholar 

  9. Monaghan, J.J.: SPH without a tensile instability. J. Comput. Phys. 159, 290–311 (2000)

    Article  MATH  Google Scholar 

  10. Cleary, P.W., Monaghan, J.J.: Conduction modelling using Smoothed Particle Hydrodynamics. J. Comput. Phys. 148, 227–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, vol. 547, pp. 541–547 (1983)

    Google Scholar 

  12. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  13. Spreng, F., Schnabel, D., Mueller, A., Eberhard, P.: A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics. Comput. Part. Mech. 1, 131–145 (2014)

    Article  Google Scholar 

  14. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids. Comput. Anim. Virtual Worlds 15, 159–171 (2004)

    Article  Google Scholar 

  15. Owen, J.M.: ASPH modeling of material damage and failure. In: Proceedings of the 5th International SPHERIC SPH Workshop, pp. 297–304 (2010)

    Google Scholar 

  16. Mueller, A.: Dynamic refinement and coarsening for the Smoothed Particle Hydrodynamics method. Dissertation, University of Stuttgart (2015)

    Google Scholar 

  17. Spreng, F., Eberhard, P.: The way to an enhanced Smoothed Particle Hydrodynamics formulation suitable for machining process simulations. In: Proceedings of the 8th International SPHERIC SPH Workshop, pp. 255–262 (2013)

    Google Scholar 

  18. Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P., Feldman, J.: Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput. Methods Appl. Mech. Eng. 256, 132–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaspers, S.P.F.C.: Metal cutting mechanics and material behaviour. Dissertation, Eindhoven University of Technology (1999)

    Google Scholar 

  20. Gaugele, T., Eberhard, P.: Simulation of cutting processes using mesh-free Lagrangian particle methods. Comput. Mech. 51, 261–278 (2013)

    Article  MATH  Google Scholar 

  21. Armarego, E.J.A., Brown, R.H.: The Machining of Metals. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  22. Spreng, F., Schnabel, D., Mueller, A., Eberhard, P.: Smoothed Particle Hydrodynamics with adaptive discretization. In: Proceedings of the 9th International SPHERIC SPH Workshop, pp. 192–199 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Eberhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Spreng, F., Eberhard, P. (2018). Modeling of Orthogonal Metal Cutting Using Adaptive Smoothed Particle Hydrodynamics. In: Biermann, D., Hollmann, F. (eds) Thermal Effects in Complex Machining Processes. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57120-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57120-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57119-5

  • Online ISBN: 978-3-319-57120-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics