Thermo-Mechanical Simulation of Hard Turning with Macroscopic Models

  • E. UhlmannEmail author
  • R. Mahnken
  • I. M. Ivanov
  • C. Cheng
Part of the Lecture Notes in Production Engineering book series (LNPE)


Based on the concept of generalized stresses, a multi-mechanism model has been developed concerning asymmetric visco-plasticity, asymmetric hardness dependency and transformation induced plasticity (TRIP), which are decisive phenomena affecting the process-related ductility in hard turning. The asymmetric effects are taken into account using the concept of weighting functions related to stress modes such as tension, compression and shear. The model also considers the phase transformations between martensite and austenite during the material heating as well as austenite and white layer formation due to the so-called reverse martensite transformation. Hardness modifications as a result of the white layer formation are considered. Moreover, the model is specialized for chrome bearing steel AISI 52100 and applied in cutting simulations using the commercial Finite-Element-Method (FEM) software systems ABAQUS and Deform. The evaluation of the simulation results enables the analysis of the influence of crucial actuating variables on the machining accuracy.



This paper is based on investigations of SPP 1480 which is kindly supported by the Deutsche Forschungsgemeinschaft (DFG). Furthermore, we gratefully acknowledge the support of the company Nordmetall, Adorf, Germany, for performing the mechanical tests related to the asymmetric visco-plasticity and hardness dependency and Stiftung Institut für Werkstofftechnik (IWT), University of Bremen, for performing the dilatometer tests related to the TRIP-strains.


  1. 1.
    Acht, C., Dalgiç, M., Frerichs, F., Hunkel, M., Irretier, A., Lübben, T., Surm, H.: Ermittlung der materialdaten zur simulation des Durchhärtens von komponenten aus 100Cr6—Teil 1. HTM J. Heat Treat. Mater. 63, 234–244 (2008)CrossRefGoogle Scholar
  2. 2.
    Ahrens, U.: Beanspruchungsabhängiges Umwandlungsverhalten und Umwandlungsplastizität niedrig legierter Stähle mit unterschiedlich hohen Kohlenstoffgehalten, Dissertation, University of Paderborn, Germany (2003)Google Scholar
  3. 3.
    Ammar, K., Appolaire, B., Cailletaud, G., Feyel, F., Forest, S.: Finite element formulation of a phase field model based on the concept of generalized stresses. Comput. Mater. Sci. 45, 800–805 (2009)CrossRefGoogle Scholar
  4. 4.
    Biermann, D., Liedschulte, M.: Plasmauntersttztes drehen von hartlegierungen auf eisenbasis mit PKB. Ind. Diamanten Rundschau 28(2), 71–77 (1994)Google Scholar
  5. 5.
    Biermann, D., Höhne, F., Sieben, B., Zabel, A.: Finite element modeling and three-dimensional simulation of the turning process incorporating the material hardness. Int. J. Mater. Form. 3–1, 459–462 (2010)CrossRefGoogle Scholar
  6. 6.
    Bökenheide, S., Wolff, M., Dalgic, M., Lammers, D., Linke, D.: Creep, phase transformations and transformation-induced plasticity of 100Cr6 steel during heating. In: Zoch, H.W., Lübben, T. (eds.) Proceedings of 3rd International Conference on Distortion Engineering, Bremen, Germany, 14–16, September (IWT Bremen), pp 411–418 (2012)Google Scholar
  7. 7.
    Byrne, G., Dornfeld, D., Denkena, B.: Advancing cutting technology. CIRP Annals 52(2), 483–507 (2003)CrossRefGoogle Scholar
  8. 8.
    Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulations based on the concept of generalized stresses. Comput. Mater. Sci. 100B, 144–158 (2015)CrossRefGoogle Scholar
  9. 9.
    Denis, S., Simon, A., Beck, G.: Analysis of the thermomechanical behaviour of steel during martensitic quenching and calculation of internal stresses, Hrsg.: Macherauch, E., Hauk, V., pp. 211–238 (1983)Google Scholar
  10. 10.
    Forest, S., Ammar, K., Appolaire, B.: Micromorphic vs. phase-field approaches for gradient viscoplasticity and phase transformations. Lecture Notes in Applied and Computational Mechanics, vol. 59, pp. 69–88 (2011)Google Scholar
  11. 11.
    Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Griffiths, B.J.: Mechanisms of white layer generation with reference to machining and deformation processes. Trans. ASME J. Tribol. 109, 525–530 (1987)CrossRefGoogle Scholar
  13. 13.
    Gurtin, M.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Halle, T.: Zusammenhänge zwischen Spanvorgängen und dem mechanischen Werkstoffverhalten bei hohen Dehnungsgeschwindigkeiten, Dissertation, Technical University of Chemnitz, Germany (2005)Google Scholar
  15. 15.
    Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Huh, H., Kang, W.J.: Crash-worthiness assessment of thin-walled structures with the high-strength steel sheet. Int. J. of Veh. Des. 30(1/2) (2002)Google Scholar
  17. 17.
    Irretier, A.: Abschlussbericht Projekt C1 “Stoffwertebestimmung”, Sonderforschungsbereichs 570 “Distorsion Engineering”. University of Bremen, Germany (2008)Google Scholar
  18. 18.
    Iwamoto, T., Tsuta, T., Tomita, T.: Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modeling of transformation kinetics. Int. J. Mech. Sci. 40(2–3), 173–182 (1998)CrossRefGoogle Scholar
  19. 19.
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strain rates and high temperatures. In: Proceedings 7th International Symposium on Ballistics, The Hague, pp. 541–547 (1983)Google Scholar
  20. 20.
    Koistinen, D.P., Marburger, R.E.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallica 7, 59–60 (1959)CrossRefGoogle Scholar
  21. 21.
    Leblond, J.B., Devaux, J.: A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32, 137–146 (1984)CrossRefGoogle Scholar
  22. 22.
    Leblond, J.B.: Mathematical modelling of transformation plasticity in steels II: coupling with strain hardening phenomena. Int. J. of Plast. 5, 537–591 (1989)Google Scholar
  23. 23.
    Mahnken, R.: Creep simulation of asymmetric effects by use of stress mode dependent weighting functions. Int. J. Solids Struct. 40, 6189–6209 (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Mahnken, R., Johansson, M., Runesson, K.: Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm. Eng. Comput. 15(7), 925–955 (1998)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mahnken, R.: Identification of material parameters for constitutive equations, In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.), Encyclopedia of Computational Mechanics, vol. 2, Chapter 19. Wiley Ltd, Chichester (2004)Google Scholar
  26. 26.
    Mahnken, R., Wolff, M., Cheng, C.: A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int. J. Solids Struct. 50, 3045–3066 (2013)CrossRefGoogle Scholar
  27. 27.
    Maugin, G.A., Metrikine, A.V.: Mechanics of Generalized Continua, One Hundred Years After the Cosserats. Springer, Berlin, Heidelberg (2010)zbMATHGoogle Scholar
  28. 28.
    Ramesh, A., Melkote, S.N.: Modeling of white layer formaion under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int. J. Mach. Tools Manuf. 48, 402–414 (2007)CrossRefGoogle Scholar
  29. 29.
    Rech, J., Moisan, A.: Surface integrity in finish hard turning of case hardened steels. Int. J. Mach. Tools Manuf. 43, 543–550 (2003)CrossRefGoogle Scholar
  30. 30.
    Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Mechanics and Materials, Springer, Berlin (1998)zbMATHGoogle Scholar
  31. 31.
    Stouffer, D.C., Dame, L.T.: Inelastic Deformation of Metals. Wiley, New York (1996)Google Scholar
  32. 32.
    Spitzig, W.A., Sober, R.J., Richmond, O.: Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metall. 23, 885–893 (1975)CrossRefGoogle Scholar
  33. 33.
    Tönshoff, H.K., Arendt, C., Ben, A.R.: Cutting of hardened steel. CIRP Annals 49(2), 547–566 (2000)CrossRefGoogle Scholar
  34. 34.
    Uhlmann, E., Ivanov, I.M.: Zerspankraftsimulation beim Hartdrehen Dreidimensionale Modellierung des Hartdrehens zur Zerspankraftberechnung und Werkzeugoptimierung, wt Werkstattstechnik. 1(2), 10–15 (2012)Google Scholar
  35. 35.
    Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: FEM modeling of hard turning with consideration of viscoplastic asymmetry and phase transformation. In: Proceedings of the XXIV CIRP Sponsored Conference on Supervising and Diagnostics of Machining Systems, 11–14 March 2013, Karpacz, Poland (2013)Google Scholar
  36. 36.
    Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: A novel finite element approach to modeling hard turning in due consideration of the viscoplastic asymmetry effect. In: Proceedings of the 15th CIRP Conference on Modelling of Machining Operations, 11–12 June 2015, Karlsruhe, Germany (2015)Google Scholar
  37. 37.
    Umbrello, D., Hua, J., Shivpuri, R.: Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater. Sci. Eng. A 374, 90–100 (2004)Google Scholar
  38. 38.
    Umbrello, D., Ambrogio, G., Filice, L., Shivpuri, R.: An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. J. Mater. Process. Technol. 189, 143–152 (2007)CrossRefGoogle Scholar
  39. 39.
    Umbrello, D., Filice, L.: Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. Annals CIRP 58(1), 73–76 (2009)CrossRefGoogle Scholar
  40. 40.
    Zwirlein, O.: Die Beeinflussung der mechanischen Eigenschaften von gehrtetem Wlzlagerstahl 100Cr6 durch hydrostatischen Druck. Materialwissenschaft und Werkstofftechnik 8(10), 344–353 (1977)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • E. Uhlmann
    • 1
    Email author
  • R. Mahnken
    • 2
  • I. M. Ivanov
    • 1
  • C. Cheng
    • 2
  1. 1.Institute for Machine Tools and Factory Management (IWF), Technische Universität BerlinBerlinGermany
  2. 2.Chair of Engineering Mechanics (LTM)University of PaderbornPaderbornGermany

Personalised recommendations