Modelling and Simulation of Internal Traverse Grinding—From Micro-thermo-mechanical Mechanisms to Process Models

  • R. HoltermannEmail author
  • S. Schumann
  • A. Menzel
  • D. Biermann
Part of the Lecture Notes in Production Engineering book series (LNPE)


This contribution deals with the modelling and simulation of Internal Traverse Grinding (ITG) using electroplated cubic Boron Nitride (cBN) wheels. This abrasive process fulfils the industrial demands for an extensive rate of material removal along with a good surface quality while minimising the number of manufacturing processes. To overcome one drawback of ITG in terms of a highly concentrated thermal load on the workpiece surface, a multi-scale simulation framework that combines different modelling methods in a hybrid framework is presented. In this context, a geometric-kinematic simulation is combined with a finite element analysis which focuses on the thermo-mechanical response of a single cBN grain being in contact with a hardened workpiece. Via a special scale-bridging scheme, the results of both the former simulations are used to compute a thermo-mechanical load compound acting as a boundary condition in a process-scale finite element model. The latter is then used to capture thermally induced geometrical errors during ITG and to develop compensation strategies accordingly.



Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the context of Priority Program 1480 (project IDs: ME 1745/7-1-3; BI 498/23-1-3) is gratefully acknowledged.


  1. 1.
    Marschalkowski, K., Biermann, D., Weinert, K.: On the characteristics of high-performance internal traverse grinding using electroplated CBN wheels. In: Aoyama, T., Takeuchi, Y. (eds.) Proceedings of the 4th CIRP International Conference on High Performance Cutting (CIRP HPC 2010), vol. 1, pp. 393–398 (2010)Google Scholar
  2. 2.
    Marschalkowski, K.: Beitrag zur Prozessentwicklung für das Hochleistungsinnenrund-Schälschleifen mit galvanisch gebundenen CBN-Schleifscheiben. Ph.D. thesis, Institut für Spanende Fertigung, TU Dortmund (2010)Google Scholar
  3. 3.
    Klocke, F., Brinksmeier, E., Weinert, K.: Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRefGoogle Scholar
  4. 4.
    Schulze, V., Uhlmann, E., Mahnken, R., Menzel, A., Biermann, D., Zabel, A., Bollig, P., Ivanov, M., Cheng, C., Holtermann, R., Bartel, T.: Evaluation of different approaches for modeling phase transformations in machining simulation. Prod. Eng. 9(4), 437–449 (2015)CrossRefGoogle Scholar
  5. 5.
    Jaeger, J.C., Carslaw, H.S.: Conduction of Heat in Solids. Oxford University Press, London (England) (1959)zbMATHGoogle Scholar
  6. 6.
    Jaeger, J.C.: Moving sources of heat and the temperature at sliding contacts. J. Proc. R. Soc. NSW 76(3), 203–224 (1942)Google Scholar
  7. 7.
    Schumann, S., Holtermann, R., Biermann, D., Menzel, A.: Hochleistungs-Innenrundschälschleifen—Thermomechanische Betrachtung in Abhängigkeit vom radialen Gesamtaufmaß. Diam. Bus. 11(2), 36–43 (2013)Google Scholar
  8. 8.
    Schumann, S., Holtermann, R., Biermann, D., Menzel, A.: Lokale Betrachtung des Innenrundschälschleifens - Modellhafte Ermittlung der thermomechanischen Belastung in Abhängigkeit des Schruppzonenwinkels. wt - Werkstattstechnik online 103(1), 493–498 (2013)Google Scholar
  9. 9.
    Schumann, S., Siebrecht, T., Kersting, P., Biermann, D., Holtermann, R., Menzel, A.: Determination of the thermal load distribution in internal traverse grinding using a geometric-kinematic simulation. In: Procedia CIRP, vol. 31, pp. 322–327 (2015). 15th CIRP Conference on Modelling of Machining Operations (15th CMMO)Google Scholar
  10. 10.
    Klocke, F.: Manufacturing Processes 2—Grinding, Honing, Lapping. Springer (2009)Google Scholar
  11. 11.
    Lowin, R.: Schleiftemperaturen und ihre Auswirkungen im Werkstück. Ph.D. thesis, RWTH Aachen (1980)Google Scholar
  12. 12.
    Holtermann, R., Schumann, S., Menzel, A., Biermann, D.: Ansätze zur Modellierung und Simulation des Innenrundschälschleifens. Diam. Bus. 40, 30–41 (2012)Google Scholar
  13. 13.
    Schumann, S., Würz, E., Biermann, D., Holtermann, R., Menzel, A.: Wärmeeintrag beim Hochleistungs-Innenrundschälschleifen beherrschen - Ermittlung der thermischen Werkstückbelastungen mittels FEM. VDI-Z Integrierte Produktion 154(I-2012), 31–33 (2012)Google Scholar
  14. 14.
    Foley, J.D., Feiner, S.K., Hughes, J.F., Phillips, R.L.: Introduction to Computer Graphics. Addison-Wesley Longman Publishing Co., Boston (United States of America) (1994)Google Scholar
  15. 15.
    Bailey, M., Hedges, L.: Die Kristallmorphologie von Diamant und ABN. Industrie-Diamanten-Rundschau 3(29), 126–129 (1995)Google Scholar
  16. 16.
    Jackson, M.J., Davim, J.P.: Machining with Abrasives. Springer, Berlin (2011)CrossRefGoogle Scholar
  17. 17.
    Holtermann, R., Schumann, S., Menzel, A., Biermann, D.: Modelling, simulation and experimental investigation of chip formation in internal traverse grinding. Prod. Eng. 7(2–3), 251–263 (2013)CrossRefGoogle Scholar
  18. 18.
    Holtermann, R., Menzel, A., Schumann, S., Biermann, D., Siebrecht, T., Kersting, P.: Modelling and simulation of internal traverse grinding: bridging meso- and macro-scale simulations. Prod. Eng. 9(4), 451–463 (2015)CrossRefGoogle Scholar
  19. 19.
    Holtermann, R., Schumann, D., Menzel, A., Biermann, D.: A hybrid approach to the modelling and simulation of grinding processes. In: Proceedings of the 11th World Congress Computational Mechanics (WCCM XI), pp. 1932–1937 (2014)Google Scholar
  20. 20.
    Holtermann, R., Schumann, S., Zabel, A., Biermann, D., Menzel, A.: Numerical determination of process values influencing the surface integrity in grinding. Procedia CIRP 45, 39–42 (2016)CrossRefGoogle Scholar
  21. 21.
    Hortig, C., Svendsen, B.: Simulation of chip formation during high-speed cutting. J. Mater. Process. Technol. 186(1–3), 66–76 (2007)CrossRefGoogle Scholar
  22. 22.
    Hortig, C.: Local and non-local thermomechanical modeling and finite-element simulation of high-speed cutting. Ph.D. thesis, TU Dortmund, Institute of Mechanics (2011)Google Scholar
  23. 23.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng. 33(7), 1365–1382 (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)CrossRefzbMATHGoogle Scholar
  25. 25.
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th International Symposium on Ballistics, vol. 1, pp. 541–547 (1983)Google Scholar
  26. 26.
    Huang, Y., Liang, S.Y.: Force modelling in shallow cuts with large negative rake angle and large nose radius tools application to hard turning. Int. J. Adv. Manuf. Technol. 22(9–10), 626–632 (2003)CrossRefGoogle Scholar
  27. 27.
    Waffenschmidt, T., Polindara, C., Menzel, A., Blanco, S.: A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput. Methods Appl. Mech. Eng. 268, 801–842 (2014)Google Scholar
  28. 28.
    Waffenschmidt, T., Polindara, C., Menzel, A.: A gradient-enhanced continuum damage model for residually stressed fibre-reinforced materials at finite strains. In: Lenarz, T., Wriggers, P. (eds.) Biomedical Technology, pp. 19–40. Springer International Publishing (2015)Google Scholar
  29. 29.
    Simulia: Abaqus documentation. Dassault Systèmes, version 6.14 edition (2014)Google Scholar
  30. 30.
    Zaera, R., Rodríguez-Martínez, J.A., Rittel, D.: On the Taylor-Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel. Int. J. Plast. 40, 185–201 (2013)Google Scholar
  31. 31.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  32. 32.
    Biermann, D., Holtermann, R., Menzel, A., Schumann, S.: Modelling and simulation of thermal effects in internal traverse grinding of hardened bearing steel. CIRP Ann. Manuf. Technol. 65(1), 321–324 (2016)CrossRefGoogle Scholar
  33. 33.
    Ramesh, A., Melkote, S.N.: Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int. J. Mach. Tools Manuf. 48(3–4), 402–414 (2008)CrossRefGoogle Scholar
  34. 34.
    Wang, Z., Al-Zkeri, I.: Determination of flow stress data for AISI 52100 using machining tests. Technical Report Report No. ERC-NSM-07-R-08, Engineering Research Center for Net Shape Manufacturing, The Ohio State University 1971 Neil Avenue Columbus, Ohio 43201 (2007)Google Scholar
  35. 35.
    Irretier, A.: Schlussbericht SFB570—Teilprojekt C1 “Stoffwertebestimmung”. Technical report, Universität Bremen (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • R. Holtermann
    • 1
    Email author
  • S. Schumann
    • 2
  • A. Menzel
    • 1
    • 3
  • D. Biermann
    • 2
  1. 1.Institute of Mechanics (IM)TU DortmundDortmundGermany
  2. 2.Institute of Machining Technology (ISF)TU DortmundDortmundGermany
  3. 3.Division of Solid MechanicsLund UniversityLundSweden

Personalised recommendations