Skip to main content

Compensation Strategies for Thermal Effects in Dry Milling

  • Chapter
  • First Online:
Thermal Effects in Complex Machining Processes

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

In dry machining of high precision parts shape deviations mainly arise due to thermo-elastic expansion during cutting and machining induced residual stresses. In order to meet higher quality standards when applying the ecologically and economically favourable concept of dry machining, predictive compensation strategies have to be developed which take into account the aforementioned causes for shape deviations. This work presents a newly developed hybrid model integrated in an optimisation algorithm that allows to systematically identify such compensation strategies. Both mechanisms contributing to the shape deviations of machined workpieces are implemented as sub-models applying the Finite Element Method. Aiming at a minimisation of total shape deviations the Simultaneous Analysis and Design approach is utilised. The overall optimisation procedure shows to be time-efficient and is able to find milling strategies leading to a significant reduction of shape deviations. When considered individually, the hybrid model is able to predict each of the two mechanisms, deformation due to machining induced residual stresses and uneven material removal due to thermo-elastic expansion, very well. Experiments based on the predicted milling strategies lead to a substantial reduction of shape deviations and show that additional mechanisms should be implemented for a further process optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also called black-box optimisation.

  2. 2.

    Also known as PDE-constrained optimisation.

  3. 3.

    Also known as Navier-Cauchy-equations or elastostatic equations.

  4. 4.

    The objective value corresponds to the arithmetic mean of the squared deviations [μm²].

Abbreviations

\( {\mathbf{A}} \) :

System matrix

\( a \) :

Width of a premachined and normalised bar

\( a_{e} \) :

Width of cut (\( {\text{mm}} \))

\( {\mathbf{a}}_{{\mathbf{e}}} \) :

Vector of widths of cut

\( a_{e,i} \) :

Width of cut of the \( i \)-th milling path (\( {\text{mm}} \))

\( a_{i} \) :

Coefficient of the \( i \)-th regression model

\( a_{p} \) :

Depth of cut (\( {\text{mm}} \))

\( b \) :

Height of a premachined and normalised bar

\( {\mathbf{b}} \) :

Right-hand side vector

\( b_{i} \) :

Coefficient of the \( i \)-th regression model

\( c \) :

Cost-term factor

\( c_{i} \) :

Coefficient of the \( i \)-th regression model

\( c_{p} \) :

Specific heat capacity (\( {\text{J/(kg}}\,{\text{K)}} \))

\( d_{i} \) :

Coefficient of the \( i \)-th regression model

\( E \) :

Modulus of elasticity (\( {\text{N/m}}^{ 2} \))

\( e_{i} \) :

Coefficient of the \( i \)-th regression model

\( F \) :

Objective function (\( {\text{K}}^{ 2} \) or \( {\upmu}{\text{Microsoft}}^{ 2} \))

\( {\mathbf{G}} \) :

System of equations

\( f_{i} \) :

Coefficient of the \( i \)-th regression model

\( f_{z} \) :

Feed per tooth (mm)

\( g_{i} \) :

Coefficient of the \( i \)-th regression model

\( h \) :

Lever (mm)

\( h_{i} \) :

Coefficient of the \( i \)-th regression model

\( k \) :

Thermal conductivity (\( {\text{W/(m}}\,{\text{K)}} \))

\( K \) :

Plate stiffness (Nmm)

\( l \) :

Length of a premachined and normalised bar

\( M \) :

Number of measured temperatures

\( M_{x} \) :

Bending moment along x-axis

\( M_{xy} ,\;M_{yx} \) :

Torsion moment in xy-plane

\( M_{y} \) :

Bending moment along y-axis

\( n \) :

Rotational speed or number of milling paths

\( {\mathbf{n}} \) :

Normal vector

\( N \) :

Size of \( {\mathbf{T}} \), \( {\mathbf{u}}_{source} \) or \( {\mathbf{u}}_{tot,z} \)

\( \dot{q}_{wp} \) :

Heat flux into the workpiece (W/mm²)

\( {\mathbf{S}} \) :

Vector of model states

\( T \) :

Temperature (\( {\text{K}} \)) or plate thickness (\( {\text{mm}} \))

\( {\mathbf{T}} \) :

Vector of simulated temperatures (\( {\text{K}} \))

\( {\bar{\mathbf{T}}} \) :

Vector of measured temperatures (\( {\text{K}} \))

\( \bar{T}_{i} \) :

\( i \)-th measured temperature (\( {\text{K}} \))

\( \tilde{T}_{i} \) :

\( i \)-th simulated temperature corresponding to \( \bar{T}_{i} \) (\( {\text{K}} \))

\( u \) :

Nodal displacement

\( u_{source} \) :

Source stresses induced displacement vector field (\( {\upmu }{\text{m}}) \)

\( {\mathbf{u}}_{source} \) :

Vector of discrete displacements induced by source stresses (\( {\upmu }{\text{m}}) \)

\( u_{source,i} {\kern 1pt} \) :

\( i \)-th entry of \( {\mathbf{u}}_{source} \) (\( {\upmu }{\text{m}}) \)

\( u_{{source,\hat{i}}} {\kern 1pt} \) :

Source stresses induced displacement in z-direction in the unsupported corner (\( {\upmu }{\text{m}}) \)

\( u_{source,x} \) :

Source stresses induced displacement in x-direction (\( {\upmu }{\text{m}}) \)

\( u_{source,y} \) :

Source stresses induced displacement in y-direction (\( {\upmu }{\text{m}}) \)

\( u_{source,z} \) :

Source stresses induced displacement in z-direction (\( {\upmu }{\text{m}}) \)

\( u_{source}^{\hbox{max} } \) :

\( \mathop {{ \hbox{max} }\,}\limits_{i = 1, \ldots ,N} |u_{source,i} | \)

\( u_{therm} {\kern 1pt} \) :

Thermo-elastic displacement (\( {\upmu }{\text{m}}) \)

\( u_{tot} {\kern 1pt} \) :

Total displacement (\( {\upmu }{\text{m}}) \)

\( {\mathbf{u}}_{tot,z} \) :

Vector of discrete total displacements in z-direction (\( {\upmu }{\text{m}}) \)

\( u_{tot,z,i} {\kern 1pt} \) :

\( i \)-th entry of \( {\mathbf{u}}_{tot,z} \) (\( {\upmu }{\text{m}}) \)

\( u_{tot}^{\hbox{max} } \) :

\( \mathop { \hbox{max} }\limits_{i = 1, \ldots ,N} |u_{tot,z,i} | \)

\( v_{c} \) :

Cutting velocity (\( 100\,{\text{m/min}} \) or \( {\text{mm/min}} \))

\( {\mathbf{v}}_{{\mathbf{c}}} \) :

Vector of cutting velocities

\( v_{c,i} \) :

Cutting velocity of the \( i \)-th milling path (\( {\text{m/mm}} \))

\( v_{f} \) :

Feed velocity (\( {\text{m/min}} \) or \( {\text{mm/min}} \))

\( {\mathbf{v}}_{{\mathbf{f}}} \) :

Vector of feed velocities

\( v_{f,i} \) :

Feed velocity of the \( i \)-th milling path (\( {\text{mm/min}} \))

\( w \) :

Displacement in z-direction

\( {\mathbf{X}} \) :

Vector of SAND optimisation variables

\( {\mathbf{X}}^{*} \) :

Vector of final SAND optimisation variables

\( z_{0} \) :

Layer thickness of source stresses

\( {\mathbf{Z}} \) :

Vector of NAND optimisation variables

\( \alpha \) :

Rotation angle of the milling paths (\( {\text{rad}} \)) or coefficient of thermal expenasion (\( 1 / {\text{K}} \))

\( {\Gamma } \) :

Workpiece surface

\( \lambda \) :

Lamé’s first parameter (\( {\text{N/m}}^{ 2} \))

\( \mu \) :

Lamé’s second parameter (\( {\text{N/m}}^{ 2} \))

\( \nu \) :

Poisson’ ratio (\( { - } \))

\( \rho \) :

Density (\( {\text{kg/m}}^{ 3} \))

\( \sigma_{source.m} \) :

Source stress tensor field (\( {\text{N/mm}}^{ 2} \))

\( {\mathbf{\upsigma }}_{source.m} \) :

Vector of discrete source stresses (\( {\text{N/mm}}^{ 2} \))

\( {\hat{\boldsymbol{\upsigma }}}_{source.m} \) :

Fixed source stress tensor (\( {\text{N/mm}}^{ 2} \))

\( \sigma_{source.m,x} \) :

Normal source stress in x-direction (\( {\text{N/mm}}^{ 2} \))

\( \sigma_{source.m,y} \) :

Normal source stress in y-direction (\( {\text{N/mm}}^{ 2} \))

\( \sigma_{source.wp,i} \) :

Workpiece inherent source stress tensor in layer \( i \) (\( {\text{N/mm}}^{ 2} \))

\( \sigma_{source.wp,i,x} \) :

Workpiece inherent source stress in layer \( i \) in x-direction (\( {\text{N/mm}}^{ 2} \))

\( \sigma_{source.wp,i,y} \) :

Workpiece inherent source stress in layer \( i \) in x-direction (\( {\text{N/mm}}^{ 2} \))

\( \tau_{source.m,xy} \) :

Shear source stress in x-y-plane (\( {\text{N/mm}}^{ 2} \))

\( \tau_{source.wp,i,xy} \) :

Workpiece inherent source stress in layer \( i \) in x-y-plane (\( {\text{N/mm}}^{ 2} \))

\( {\Omega } \) :

Workpiece domain

References

  1. Komanduri, R., Hou, Z.B.: Thermal modelling of the metal cutting process Part I—Temperature rise distribution due to shear plane heat source. Int. J. Mech. Sci. 42, 1715–1752 (2000)

    Article  MATH  Google Scholar 

  2. Kronenberg, M.: Theory and practice for operation and development of machining processes. Machining Science and Application. Pergamon Press, Oxford, New York (1966)

    Google Scholar 

  3. Weinert, K., Inasaki, I., Sutherland, J.W., Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann.—Manuf. Technol. 53(2), 511–537 (2004)

    Google Scholar 

  4. Gulpak, M., Sölter, J.: Development and validation of a hybrid model for the prediction of shape deviations in dry machining processes. Procedia CIRP 31(1), 346–351 (2015)

    Google Scholar 

  5. Dyck, M.: Beitrag zur Analyse thermisch bedingter Werkstückdeformationen in Trockenbearbeitungsprozessen. Dr. Ing. Dissertation wbk Institute of Production Science Karlsruhe, Shaker Verlag, Aachen (2007)

    Google Scholar 

  6. Brinksmeier, E., Sölter, J.: Prediction of shape deviations in machining. CIRP Ann.—Manuf. Technol. 58(1), 507–510 (2009)

    Article  Google Scholar 

  7. Sölter, J.: Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spandender Bearbeitung. Dr.–Ing. Dissertation University of Bremen, Shaker Verlag, Aachen (2010)

    Google Scholar 

  8. Sölter, J., Gulpak, M., Brinksmeier, E.: Modellentwicklung zur Minimierung von Geometrieabweichungen in der Trockenbearbeitung. ZWF 107(4), 224–228 (2012)

    Article  Google Scholar 

  9. Gulpak, M., Sölter, J.: Thermal modelling of drilling steel. Adv. Mater. Res. 1140, 205–212 (2016)

    Article  Google Scholar 

  10. Gulpak, M., Sölter, J.: Development of a hybrid model for the prediction of shape deviations in milling. Materialwiss. Werkstofftech. 47(8), 718–725 (2016)

    Article  Google Scholar 

  11. Tönshoff, H.K.: Eigenspannungen und plastische Verformungen im Werkstück durch spanende Bearbeitung, Dr.-Ing. Dissertation TH Hannover (1966)

    Google Scholar 

  12. Arora, J.S., Wang, Q.: Review of formulations for structural and mechanical system optimization. Struct. Multidisciplin. Optim. 30(4), 251–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Büskens, C., Wassel, D.: The ESA NLP solver WORHP. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering. Optimization and Its Applications, vol. 73, pp. 85–110. Springer, Berlin (2013)

    Chapter  Google Scholar 

  14. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Timoshenko, S.P., Woinkowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill Book Company (1959)

    Google Scholar 

  16. Gulpak, M., Sölter, J., Brinksmeier, E.: Prediction of shape deviations in face milling of steel. Procedia CIRP 8, 15–20 (2013)

    Article  Google Scholar 

  17. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Elsevier Science, Burlington (2009)

    Google Scholar 

  18. Kienzler, R., Schröder, R.: Einführung in die Höhere Festigkeitslehre. Springer, Heidelberg (2009)

    Book  Google Scholar 

  19. Braess, D.: Finite Elemente—Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer, Berlin, Heidelberg (2007)

    MATH  Google Scholar 

  20. Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24 (2016). doi:10.1515/jnma-2016-1045

  21. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–/27 (2007)

    Google Scholar 

  22. Wernsing, H., Gulpak, M., Büskens, C., Sölter, J., Brinksmeier, E.: Enhanced method for the evaluation of the thermal impact of dry machining processes. Prod. Eng. Res. Devel. 8(3), 291–300 (2014)

    Article  Google Scholar 

  23. Sölter, J., Gulpak, M.: Heat partitioning in dry milling of steel. CIRP Ann.—Manuf. Technol. 61(1), 87–90 (2012)

    Article  Google Scholar 

  24. Wernsing, H., Büskens, C.: Parameter identification for finite element based models in dry machining applications. Procedia CIRP 31, 328–333 (2015)

    Article  Google Scholar 

  25. N.N.: Taschenbuch der StahlEisen-Werkstoffblätter. Verein Deutscher Eisenhüttenleute (Ed.), Verlag Stahleisen, Düsseldorf (1997)

    Google Scholar 

Download references

Acknowledgements

The results were obtained within the DFG priority programme 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”. The authors kindly thank the Deutsche Forschungsgemeinschaft (DFG) for the financial support of the projects BR825/65–1, SO1236/1–2, SO1236/1–3, BU1289/6–1, BU1289/6–2 and BU1289/6–3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gulpak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gulpak, M., Wernsing, H., Sölter, J., Büskens, C. (2018). Compensation Strategies for Thermal Effects in Dry Milling. In: Biermann, D., Hollmann, F. (eds) Thermal Effects in Complex Machining Processes. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57120-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57120-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57119-5

  • Online ISBN: 978-3-319-57120-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics