Modelling, Simulation and Compensation of Thermomechanically Induced Deviations in Deep-Hole Drilling with Minimum Quantity Lubrication

  • D. BiermannEmail author
  • H. Blum
  • I. Iovkov
  • A. Rademacher
  • K. Rosin
  • F.-T. Suttmeier
Part of the Lecture Notes in Production Engineering book series (LNPE)


This chapter summarises interdisciplinary research work on deep-hole drilling of aluminium casting using twist drills and minimum quantity lubrication (MQL). The high thermal conductivity of the workpiece material, the low cooling performance of MQL and the long main time of the process lead to a significant thermal load onto the workpiece. The thermal distortion of the machined component causes a systematic deflection of the long drilling tool and thus a high straightness deviation of the produced bore. Based on extensive technological investigations with a focus on the heat input into the workpiece a reliable simulation-based prediction of the thermomechanical distortion and the resulting bore deviations is presented. Thereby a finite element (FE)-model of the workpiece was coupled with a simple analytic representation of the deep-hole drilling tool. Using the fictitious domain method, adaptive techniques, and massive parallelisation, the FE-simulation is most efficiently realised. In order to compensate the occurring deviations, a novel approach based on radial tool path adjustment was developed, which allows for the drilling direction to be controlled during the process. The sophisticated simulations enable the determination of the optimal NC-path for the deep-hole drilling tool, which is not possible based on experiments. The validation results show a great potential of the developed methods for the simulation-based minimisation of the thermomechanically induced straightness deviation in deep-hole drilling.



This contribution is based on investigations in the research projects “Experimental and FE-based analysis of the thermal load on the tool and the workpiece in deep hole drilling using twist drills” (BI 498/24) and “Numerical analysis and efficient implementation of complex FE-models for the simulation of deep-hole drilling processes” (BL 256/11) within the Priority Programme 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”, which are kindly funded by the German Research Foundation (DFG).


  1. 1.
    Abele, E., Kuhrke, B., Rothenbücher, S.: Energieeffizienz spanender werkzeugmaschinen. Forschen—Wissenschaftsmagazin der TU Darmstadt, Frühjahr, 64–67 (2011)Google Scholar
  2. 2.
    Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware Inc, USA (2015)Google Scholar
  3. 3.
    Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II Library, Version 8.4. J. Numer. Math. (2016). Appeared onlineGoogle Scholar
  4. 4.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4):24/1–24/27 (2007)Google Scholar
  5. 5.
    Biermann, D., Blum, H., Frohne, J., Iovkov, I., Rademacher, A., Rosin, K.: Simulation of MQL deep hole drilling for predicting thermally induced workpiece deformations. In: 15th CIRP Conference on Modelling of Machining Operations in Procedia CIRP (2015)Google Scholar
  6. 6.
    Biermann, D., Blum, H., Iovkov, I., Klein, N., Rademacher, A., Suttmeier, F.-T.: Stabilization techniques and a posteriori error estimates for the obstacle problem. Appl. Math. Sci. 7, 6329–6346 (2013)MathSciNetGoogle Scholar
  7. 7.
    Brecher, C., Herfs, W., Heyers, C., Klein, W., Triebs, J.B., Beck, E., Dorn, T.: Ressourceneffizienz von werkzeugmaschinen im fokus der forschung: effizienzsteigerung durch optimierung der technologien zum komponentenbetrieb. wt Werkstattstechnik online 100(7/8), 559–564 (2010)Google Scholar
  8. 8.
    Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dauge, M., Düster, A., Rank, E.: Theoretical and numerical investigation of the finite cell method. J. Sci. Comput. 65(3), 1039–1064 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eisenblätter, G.: Trockenbohren mit Vollhartmetallwerkzeugen. Dissertation, RWTH Aachen (2000)Google Scholar
  11. 11.
    Frohne, J.: FEM-Simulation der Umformtechnik metallischer Oberflchen im Mikrokosmos. Ph.D. thesis, Universität Siegen (2011)Google Scholar
  12. 12.
    Frohne, J., Heister, T., Bangerth, W.: Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems. Int. J. Numer. Methods Eng. 105, 416–439 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grossmann, C., Roos, H.-G.: Numerical treatment of partial differential equations. Universitext. Springer, Berlin (2007). Translated and revised from the 3rd (2005) German edition by Martin StynesGoogle Scholar
  14. 14.
    Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547. The Hague, The Netherlands (1983)Google Scholar
  16. 16.
    Kamiya, M., Yakou, T., Sasaki, T., Nagatsuma, Y.: Effect of si content on turning machinability of al-si binary alloy castings. Mater. Trans. 49(3), 587–592 (2008)CrossRefGoogle Scholar
  17. 17.
    Kikuchi, N., Oden, J.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1988)Google Scholar
  18. 18.
    Klein, N.: Consistent FE-analysis of elliptic variational inequalities. Ph.D. thesis, Universität Siegen (2013)Google Scholar
  19. 19.
    Klocke, F., Eisenblätter, G.: Dry cutting. CIRP Ann.—Manuf. Technol. 46(2), 519–526 (1997)CrossRefGoogle Scholar
  20. 20.
    Liu, R., Wheeler, M., Dawson, C., Dean, R.H.: A fast convergent rate preserving discontinuous galerkin framework for rate-independent plasticity problems. Comput. Methods Appl. Mech. Eng. 32133226 (2010)Google Scholar
  21. 21.
    Pabst, R.: Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung. Dissertation, Karlsruher Institut für Technologie (2008)Google Scholar
  22. 22.
    Ramière, I., Angot, P., Belliard, M.: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput. Methods Appl. Mech. Eng. 196(4–6), 766–781 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Taebi, K.: Adaptive unstetige Finite Elemente Methoden für elastoplastische Kontaktprobleme. Ph.D. thesis, TU Dortmund (in preparation) (2016)Google Scholar
  24. 24.
    Thamke, D.: Technologische und ökonomische Aspekte der Trocken- und Minimalmengenbearbeitung am Beispiel des Einlippentiefbohrens. Dissertation, Universität Dortmund (1999)Google Scholar
  25. 25.
    Verfürth, R.: A posteriori error estimation techniques for finite element methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)Google Scholar
  26. 26.
    Weinert, K., Inasaki, I., Sutherland, J.W., Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann.—Manuf. Technol. 53(2), 511–537 (2004)CrossRefGoogle Scholar
  27. 27.
    Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica 20, 569–734 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • D. Biermann
    • 1
    Email author
  • H. Blum
    • 2
  • I. Iovkov
    • 1
  • A. Rademacher
    • 2
  • K. Rosin
    • 2
  • F.-T. Suttmeier
    • 3
  1. 1.Institute of Machining Technology, TU Dortmund UniversityDortmundGermany
  2. 2.Chair of Scientific ComputingTU Dortmund UniversityDortmundGermany
  3. 3.Work Group Scientific ComputingUniversity of SiegenSiegenGermany

Personalised recommendations