Skip to main content

The Railway Network Design, Line Planning and Capacity Problem: An Adaptive Large Neighborhood Search Metaheuristic

  • Conference paper
  • First Online:
Advanced Concepts, Methodologies and Technologies for Transportation and Logistics (EURO 2016, EWGT 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 572))

Abstract

In this chapter, we propose a model for the Railway Network Design and Line Planning (RNDLP) problem, integrating the two classical first stages in the Railway Planning Process. The network design problem incorporates costs relative to the network construction, proposing a set of candidate lines. The line planning problem is in charge of determining optimal frequencies and consequently train operations, taking into account rolling stock, personnel and fleet acquisition costs. Both problems are intertwined because the line design influences the selection of frequencies and the corresponding fleet size. We consider the existence of an alternative transportation mode for each origin-destination pair in the network. In this way, the rapid railway mode competes against the alternative mode for a given certain demand, represented by a global origin-destination matrix. Passengers choose their transportation mode according to their own utility. Since the problem is computationally intractable for realistic size scenarios, we develop an Adaptive Large Neighborhood Search (ALNS) algorithm, which can handle the RNDLP problem. As illustration, the ALNS performance is demonstrated in an artificial instance using estimated data from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discret. Appl. Math. 123(1), 75–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beirão, G., Sarsfield-Cabral, J.A.: Understanding attitudes towards public transport and private car: a qualitative study. Transp. Policy 14(6), 478–489 (2007)

    Article  Google Scholar 

  3. Blanco, V., Puerto, J., Ramos, A.: Expanding the Spanish high-speed railway network. Omega 39(2), 138–150 (2011)

    Article  Google Scholar 

  4. Borndörfer, R., Grötschel, M., Pfetsch, M.E.: Models for line planning in public transport. In: Hickman, M., Mirchandani, P., Voß, S. (eds.) Computer-Aided Systems in Public Transport. LNE, vol. 600, pp. 363–378. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Brueckner, J.K.: Transport subsidies, system choice and urban sprawl. Reg. Sci. Urban Econ. 35(6), 715–733 (2005)

    Article  Google Scholar 

  6. Bruno, G., Gendreau, M., Laporte, G.: A heuristic for the location of a rapid transit line. Comput. Oper. Res. 29, 1–12 (2002)

    Article  MATH  Google Scholar 

  7. Bruno, G., Ghiani, G., Improta, G.: A multi-modal approach to the location of a rapid transit line. Eur. J. Oper. Res. 104(2), 321–332 (1998)

    Article  MATH  Google Scholar 

  8. Bussieck, M., Kreuzer, P., Zimmermann, U.: Optimal lines for railway systems. Eur. J. Oper. Res. 96, 54–63 (1997)

    Article  MATH  Google Scholar 

  9. Bussieck, M.R., Lindner, T., Lübbecke, M.E.: A fast algorithm for near cost optimal line plans. Math. Method Oper. Res. 59(2), 205–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canca, D., Barrena, E., Algaba, E., Zarzo, A.: Design and analysis of demand-adapted railway timetables. J. Adv. Transp. 48(2), 119–137 (2014)

    Article  Google Scholar 

  11. Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J.A.: A general rapid network design, line planning and fleet investment integrated model. Ann. Oper. Res. 246(1), 127–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J.A.: An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Comput. Oper. Res. 78, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  13. Claessens, M.T., van Dijk, N.M., Zwaneveld, P.J.: Cost optimal allocation of rail passenger lines. Eur. J. Oper. Res. 110(3), 474–489 (1998)

    Article  MATH  Google Scholar 

  14. Coelho, L.C., Cordeau, J.-F., Laporte, G.: The inventory-routing problem with transshipment. Comput. Oper. Res. 39(11), 2537–2548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cordeau, J.-F., Toth, P., Vigo, D.: A survey of optimization models for train routing and scheduling. Transp. Sci. 32(4), 380–404 (1998)

    Article  MATH  Google Scholar 

  16. Corman, F., D’Ariano, A.: Assessment of advanced dispatching measures for recovering disrupted railway traffic situations. Transp. Res. Rec. J. Transp. Res. Board 2289, 1–9 (2012)

    Article  Google Scholar 

  17. Cowie, J.: The british passenger railway privatisation: conclusions on subsidy and efficiency rom the first round of franchises. J. Transp. Econ. Policy 43(1), 85–104 (2009)

    MathSciNet  Google Scholar 

  18. De-Los-Santos, A., Laporte, G., Mesa, J., Perea, F.: Simultaneous frequency and capacity setting in uncapacitated metro lines in presence of a competing mode. Transp. Res. Procedia 3, 289–298 (2014)

    Article  Google Scholar 

  19. Dufourd, H., Gendreau, M., Laporte, G.: Locating a transit line using tabu search. Locat. Sci. 4, 1–19 (1996)

    Article  MATH  Google Scholar 

  20. Erlander, S.B.: Cost-Minimizing Choice Behavior in Transportation Planning: A Theoretical Framework for Logit Models. Advances in Spatial Science. Springer Science & Business Media, Heidelberg (2010)

    Book  Google Scholar 

  21. Gallo, M., Montella, B., D’Acierno, L.: The transit network design problem with elastic demand and internalisation of external costs: an application to rail frequency optimisation. Transp. Res. Part C: Emerg. Technol. 19(6), 1276–1305 (2011)

    Article  Google Scholar 

  22. García, A., Martín, M.P.: Diseño de los vehíulos ferroviarios para la mejora de su eficiencia energética. In: Monografías ElecRail, vol. 6. Fundación de los Ferrocarriles Españoles (2012)

    Google Scholar 

  23. García-Archilla, B., Lozano, A., Mesa, J.A., Perea, F.: GRASP algorithms for the robust railway network design problem. J. Heuristics 19(2), 1–24 (2013)

    Article  MATH  Google Scholar 

  24. Gendreau, M., Laporte, G., Mesa, J.A.: Locating rapid transit lines. J. Adv. Transp. 29(2), 145–162 (1995)

    Article  Google Scholar 

  25. Goossens, J.-W., van Hoesel, S., Kroon, L.: On solving multi-type railway line planning problems. Eur. J. Oper. Res. 168(2), 403–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guihaire, V., Hao, J.: Transit network design and scheduling: a global review. Transp. Res. Part A: Policy Pract. 42(10), 1251–1273 (2008)

    Google Scholar 

  27. Gutiérrez-Jarpa, G., Obreque, C., Laporte, G., Marianov, V.: Rapid transit network design for optimal cost and origin-destination demand capture. Comput. Oper. Res. 40(12), 3000–3009 (2013)

    Article  MATH  Google Scholar 

  28. Kermanshahi, S., Shafahi, Y., Mollanejad, M., Zangui, M.: Rapid transit network design using simulated annealing. In: 12th World Conference on Transportation Research, pp. 1–15, Lisbon, Portugal (2010)

    Google Scholar 

  29. Laporte, G., Mesa, J.A., Ortega, F., Pozo, M.: Locating a metro line in a historical city centre: application to Sevilla. J. Oper. Res. Soc. 60, 1462–1466 (2009)

    Article  Google Scholar 

  30. Laporte, G., Mesa, J.A., Ortega, F., Sevillano, I.: Maximizing trip coverage in the location of a single rapid transit alignment. Ann. Oper. Res. 136(1), 49–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Laporte, G., Pascoal, M.: Path based algorithms for metro network design. Comput. Oper. Res. 62, 78–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z.-C., Lam, W.H.K., Wong, S.C., Sumalee, A.: Design of a rail transit line for profit maximization in a linear transportation corridor. Transp. Res. Part E: Logist. Transp. Rev. 48(1), 50–70 (2012)

    Article  Google Scholar 

  33. López-Ramos, F. Conjoint design of railway lines and frequency setting under semi-congested scenarios. Ph.D. thesis, Polytechnic University of Catalonia (2014)

    Google Scholar 

  34. Marín, A., García-Ródenas, R.: Location of infrastructure in urban railway networks. Comput. Oper. Res. 36(5), 1461–1477 (2009)

    Article  MATH  Google Scholar 

  35. Matisziw, T.C., Murray, A.T., Kim, C.: Strategic route extension in transit networks. Eur. J. Oper. Res. 171(2), 661–673 (2006)

    Article  MATH  Google Scholar 

  36. Paulley, N., Balcombe, R., Mackett, R., Titheridge, H., Preston, J., Wardman, M., Shires, J., White, P.: The demand for public transport: the effects of fares, quality of service, income and car ownership. Transp. Policy 13(4), 295–306 (2006)

    Article  Google Scholar 

  37. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

    Article  Google Scholar 

  38. Schöbel, A.: Line planning in public transportation: models and methods. OR Spectr. 34(3), 491–510 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shaw, P.: A new local search algorithm providing high quality solutions to vehicle routing problems. Technical report, University of Strathclyde, Glasgow (1997)

    Google Scholar 

  40. Tseng, Y.-Y.: Valuation of Travel Time Reliability in Passenger Transport, vol. 4390. Rozenberg Publishers, Amsterdam (2008)

    Google Scholar 

  41. Wardman, M.: Public transport value of time. Transp. Policy 11, 363–377 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was partially supported Ministerio de Economía y Competitividad (Spain)/FEDER under grant MTM2015-67706-P and by the Canadian Natural Sciences and Engineering Research Council under grant 2015-06189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Canca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J.A. (2018). The Railway Network Design, Line Planning and Capacity Problem: An Adaptive Large Neighborhood Search Metaheuristic. In: Żak, J., Hadas, Y., Rossi, R. (eds) Advanced Concepts, Methodologies and Technologies for Transportation and Logistics. EURO EWGT 2016 2016. Advances in Intelligent Systems and Computing, vol 572. Springer, Cham. https://doi.org/10.1007/978-3-319-57105-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57105-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57104-1

  • Online ISBN: 978-3-319-57105-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics