Skip to main content

A Numerical Study on the Compressibility of Subblocks of Schur Complement Matrices Obtained from Discretized Helmholtz Equations

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10187))

Included in the following conference series:

  • 1793 Accesses

Abstract

The compressibility of Schur complement matrices is the essential ingredient for \(\mathcal{H}\)-matrix techniques, and is well understood for Laplace type problems. The Helmholtz case is more difficult: there are several theoretical results which indicate when good compression is possible with additional techniques, and in practice sometimes basic \(\mathcal{H}\)-matrix techniques work well. We investigate the compressibility here with extensive numerical experiments based on the SVD. We find that with growing wave number k, the \(\epsilon \)-rank of blocks corresponding to a fixed size in physical space of the Green’s function is always growing like \(O(k^{\alpha })\), with \(\alpha \in [\frac{3}{4},1]\) in 2d and \(\alpha \in [\frac{4}{3},2]\) in 3d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babuska, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Num. Anal. 34(6), 2392–2423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28, 46–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Bebendorf, M., Hackbusch, W.: Existence of \({\cal{H}}\)-matrix approximants to the inverse FE-matrix of elliptic operators with \(L^{\infty }\)-coefficients. Num. Math. 95(1), 1–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betcke, T., van’t Wout, E., Gélat, P.: Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains (2016, preprint)

    Google Scholar 

  6. Börm, S., Melenk, J.M.: Approximation of the high-frequency Helmholtz kernel by nested directional interpolation. arXiv preprint arXiv:1510.07189 (2015)

  7. Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal. Appl. 31(5), 2261–2290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coifman, R., Rokhlin, V., Wandzura, S.: The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag. Mag. 35(3), 7–12 (1993)

    Article  Google Scholar 

  9. Collino, F., Tsogka, C.: Application of the perfectly matched layer absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)

    Article  Google Scholar 

  10. Delamotte, K.: Une étude du rang du noyau de l’équation de Helmholtz: application des \({\cal{H}}\)-matrices à l’EFIE. Ph.D. thesis, University Paris 13 (2016)

    Google Scholar 

  11. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Comm. Pure Appl. Math. 64(5), 697–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engquist, B., Zhao, H.: Approximate separability of Green’s function for high frequency Helmholtz equations. Technical report, DTIC Document (2014)

    Google Scholar 

  14. Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Graham, I.G., Hou, T.Y., Lakkis, O., Scheichl, R. (eds.) Numerical analysis of multiscale problems, vol. 83, pp. 325–363. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gander, M.J., Halpern, L., Magoules, F.: An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Meth. Fluids 55(2), 163–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gander, M.J., Magoules, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gander, M.J., Nataf, F.: AILU for Helmholtz problems: a new preconditioner based on the analytic parabolic factorization. J. Comput. Acoust. 9(04), 1499–1506 (2001)

    MathSciNet  Google Scholar 

  19. Gander, M.J., Nataf, F.: An incomplete LU preconditioner for problems in acoustics. J. Comput. Acoust. 13(03), 455–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gander, M.J., Zhang, H.: Iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods (2016). Submitted

    Google Scholar 

  21. Greengard, L., Gueyffier, D., Martinsson, P.-G., Rokhlin, V.: Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numerica 18, 243–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hackbusch, W.: A sparse matrix arithmetic based on \({\cal{H}}\)-matrices. part i: introduction to \({\cal{H}}\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, vol. 49. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  25. Lizé, B.: Résolution directe rapide pour les éléments finis de frontière en électromagnétisme et acoustique: -Matrices. Parallélisme et applications industrielles. Ph.D. thesis, Université Paris-Nord-Paris XIII (2014)

    Google Scholar 

  26. Martinsson, P.G., Rokhlin, V.: A fast direct solver for scattering problems involving elongated structures. J. Comput. Phys. 221, 288–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Solovyev, S., Vishnevsky, D.: A dispersion minimizing finite difference scheme and multifrontal hierarchical solver for the 3D Helmholtz equation. In: The 12th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2015), 20–24 July, pp. 428–429 (2015)

    Google Scholar 

Download references

Acknowledgments

The research described was partially supported by RFBR grants 16-05-00800,17-01-00399 and the Russian Academy of Sciences Program “Arctic”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Gander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gander, M.J., Solovyev, S. (2017). A Numerical Study on the Compressibility of Subblocks of Schur Complement Matrices Obtained from Discretized Helmholtz Equations. In: Dimov, I., FaragĂł, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57099-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57098-3

  • Online ISBN: 978-3-319-57099-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics