Mechanical and Magnetic Single-Molecule Excitations by Radio-Frequency Scanning Tunneling Microscopy

  • Reinhold KochEmail author
  • Stefan MülleggerEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


In the second half of the twentieth century, two new investigation techniques emerged that both revolutionized science and technology in their fields. The first one is (nuclear and electron) magnetic resonance (NMR, ESR), which exhibits superior energy resolution owing to the high precision of frequency measurements at resonant conditions. The second technique is scanning tunneling microscopy (STM) that has quickly established as a major investigation tool with its atomic spatial resolution. In order to benefit from both, the superior spatial resolution of the STM and the exceptional energy resolution of resonance techniques, we developed a radio-frequency (rf) STM based on a commercial low-temperature STM upgraded by a home-built rf-spectroscopic system that can be operated in active and passive modes. Here, we review recent progress in the field of rf-STM, with particular focus on our recent results on the detection and excitation of mechanical vibrations of one-dimensional molecular nanoresonators as well as of nuclear, electron, and mixed nuclear/electron spin transitions in single molecules.



We thank our former and present graduate and master students M. Rashidi, S. Tebi, S. Wiespointner-Baumgarthuber, M. Fattinger, and T. Lengauer. Furthermore, we thank Ch. Diskus and R. Rudersdorfer for helpful input on setting up our rf-circuitry, A. K. Das for supporting rf-STM measurements, W. Schöfberger for supplying TbPc\(_2\), U. Gerstmann, E. Rauls, and G.Schmidt for theoretical support, and W. Jantsch, A. Ney, and G. Serrano for fruitful discussions. We kindly acknowledge financial support of the projects P20773 and I958 by the Austrian Science Fund (FWF).


  1. 1.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)CrossRefGoogle Scholar
  2. 2.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: 7 \(\times \) 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120 (1983)CrossRefGoogle Scholar
  3. 3.
    Wöll, Ch., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 39, 7988 (1989)CrossRefGoogle Scholar
  4. 4.
    Koch, R., Borbonus, M., Haase, O., Rieder, K.H.: New aspects on the Ir(110) reconstruction: surface stabilization on mesoscopic scale via (331) facets. Phys. Rev. Lett. 67, 3416 (1991)CrossRefGoogle Scholar
  5. 5.
    Sturmat, M., Koch, R., Rieder, K.H.: Real Space Investigation of the roughening and deconstruction transitions of Au(110). Phys. Rev. Lett. 77, 5071 (1996)CrossRefGoogle Scholar
  6. 6.
    Coulman, D.J., Wintterlin, J., Behm, R.J., Ertl, G.: Novel mechanism for the formation of chemisorption phases: the (\(2\times 1\))O-Cu(110) ‘added row’ reconstruction. Phys. Rev. Lett. 64, 1761 (1990)CrossRefGoogle Scholar
  7. 7.
    Haase, O., Koch, R., Borbonus, M., Rieder, K.H.: Role of regular steps on the formation of missing-row reconstructions: oxygen chemisorption on Ni(771). Phys. Rev. Lett. 66, 1725 (1991)CrossRefGoogle Scholar
  8. 8.
    Koch, R., Schwarz, E., Schmidt, K., Burg, B., Christmann, K., Rieder, K.H.: Oxygen adsorption on Co(10–10): Different reconstruction behavior of hcp ( ) and fcc(110). Phys. Rev. Lett. 71, 1047 (1993)CrossRefGoogle Scholar
  9. 9.
    Weckesser, J., De Vita, A., Barth, J.V., Cai, C., Kern, K.: Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Phys. Rev. Lett. 87, 096101 (2001)CrossRefGoogle Scholar
  10. 10.
    Müllegger, S., Rashidi, M., Fattinger, M., Koch, R.: Interactions and self-assembly of stable hydrocarbon radicals on a metal support. J. Phys. Chem. C 116, 22587 (2012)CrossRefGoogle Scholar
  11. 11.
    Fölsch, S., Hyldgaard, P., Koch, R., Ploog, K.H.: Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 92, 056803 (2004)CrossRefGoogle Scholar
  12. 12.
    Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., Lagally, M.G.: Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020 (1990)CrossRefGoogle Scholar
  13. 13.
    Repp, J., Meyer, G., Stojković, S.M., Gourdon, A., Joachim, C.: Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005)CrossRefGoogle Scholar
  14. 14.
    Müllegger, S., Schöfberger, W., Rashidi, M., Reith, L.M., Koch, R.: Spectroscopic STM studies on single Gold(III)-porphyrin molecules. J. Am. Chem. Soc. 131, 17740 (2009)CrossRefGoogle Scholar
  15. 15.
    Müllegger, S., Rashidi, M., Lengauer, T., Rauls, E., Schmidt, W.G., Knör, G., Schöfberger, W., Koch, R.: Asymmetric saddling of single porphyrin molecules on Au(111). Phys. Rev. B 83, 165416 (2011)CrossRefGoogle Scholar
  16. 16.
    Hohage, M., Bott, M., Morgenstern, M., Zhang, Z., Michely, T., Comsa, G.: Atomic processes in low temperature Pt-Dendrite growth on Pt(111), Phys. Rev. Lett. 76 (1996)Google Scholar
  17. 17.
    Thürmer, K., Koch, R., Weber, M., Rieder, K.H.: Dynamic evolution of pyramid structures during growth of epitaxial Fe (001) films. Phys. Rev. Lett. 75, 1767 (1995)CrossRefGoogle Scholar
  18. 18.
    Wedler, G., Schneider, C.M., Trampert, A., Koch, R.: Strain relief of heteroepitaxial bcc-Fe(001) films. Phys. Rev. Lett. 93, 236101 (2004)CrossRefGoogle Scholar
  19. 19.
    Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524 (1990)CrossRefGoogle Scholar
  20. 20.
    Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of electrons to quantum corrals on a metal surface. Science 262, 218 (1993)CrossRefGoogle Scholar
  21. 21.
    Müllegger, S., Schöfberger, W., Rashidi, M., Lengauer, T., Klappenberger, F., Diller, K., Kara, K., Barth, J.V., Rauls, E., Schmidt, W.G., Koch, R.: Preserving charge and oxidation state of Au(III) ions in an agent-functionalized nanocrystal model system. ACS Nano 5, 6480 (2011)CrossRefGoogle Scholar
  22. 22.
    Li, J., Schneider, W.D., Berndt, R., Delley, B.: Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893 (1998)CrossRefGoogle Scholar
  23. 23.
    Iancu, V., Deshpande, A., Hla, S.-W.: Manipulation of the Kondo effect via two-dimensional molecular assembly. Phys. Rev. Lett. 97, 266603 (2006)CrossRefGoogle Scholar
  24. 24.
    Fernandez-Torrente, I., Franke, K.J., Pascual, J.I.: Vibrational Kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett. 101, 217203 (2008)CrossRefGoogle Scholar
  25. 25.
    Komeda, T., Isshiki, H., Liu, J., Zhang, Y.F., Lorente, N., Kato, K., Breedlove, B.K., Yamashita, M.: Observation and electric current control of a local spin in a single-molecule magnet. Nat. Commun. 2, 217 (2011)CrossRefGoogle Scholar
  26. 26.
    Franke, K.J., Schulze, G., Pascual, J.I.: Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940 (2011)Google Scholar
  27. 27.
    Müllegger, S., Rashidi, M., Fattinger, M., Koch, R.: Surface-supported hydrocarbon radicals show Kondo. J. Phys. Chem. C 117, 5718 (2013)CrossRefGoogle Scholar
  28. 28.
    Madhavan, V., Chen, W., Jamneala, T., Crommie, M.F., Wingreen, N.S.: Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567 (1998)CrossRefGoogle Scholar
  29. 29.
    Heinrich, B.W., Braun, L., Pascual, J.I., Franke, K.J.: Protection of excited spin states by a superconducting energy gap. Nat. Phys. 9, 765 (2013)CrossRefGoogle Scholar
  30. 30.
    Berndt, R., Gaisch, R., Gimzewski, J.K., Reihl, B., Schlittler, R.R., Schneider, W.-D., Tschudy, M.: Photon emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425 (1993)CrossRefGoogle Scholar
  31. 31.
    Berndt, R., Gaisch, R., Schneider, W.-D., Gimzewski, J.K., Reihl, B., Schlittler, R.R., Tschudy, M.: Atomic resolution in photon emission induced by a scanning tunneling microscope. Phys. Rev. Lett. 74, 102 (1995)CrossRefGoogle Scholar
  32. 32.
    Wiesendanger, R., Gntherodt, H.-J., Gntherodt, G., Gambino, R.J., Ruf, R.: Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys. Rev. Lett. 65, 247 (1990)CrossRefGoogle Scholar
  33. 33.
    Pietzsch, O., Kubetzka, A., Bode, M., Wiesendanger, R.: Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111). Phys. Rev. Lett. 92, 057202 (2004)CrossRefGoogle Scholar
  34. 34.
    Vedmedenko, E.Y., Kubetzka, A., von Bergmann, K., Pietzsch, O., Bode, M., Kirschner, J., Oepen, H.P., Wiesendanger, R.: Domain wall orientation in magnetic nanowires. Phys. Rev. Lett. 92, 077207 (2004)CrossRefGoogle Scholar
  35. 35.
    Heinze, S., Bode, M., Kubetzka, A., Pietzsch, O., Nie, X., Blügel, S., Wiesendanger, R.: Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805 (2000)CrossRefGoogle Scholar
  36. 36.
    Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011)CrossRefGoogle Scholar
  37. 37.
    Repp, J., Meyer, G., Paavilainen, S., Olsson, F.E., Persson, M.: Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196 (2006)CrossRefGoogle Scholar
  38. 38.
    Qiu, X.H., Nazin, G.V., Ho, W.: Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004)CrossRefGoogle Scholar
  39. 39.
    Heinrich, A.J., Gupta, J.A., Lutz, C.P., Eigler, D.M.: Single-atom spin-flip spectroscopy. Science 306, 466 (2004)CrossRefGoogle Scholar
  40. 40.
    Chen, X., Fu, Y.-S., Ji, S.-H., Zhang, T., Cheng, P., Ma, X.-C., Zou, X.-L., Duan, W.-H., Jia, J.-F., Xue, Q.-K.: Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett. 101, 197208 (2008)CrossRefGoogle Scholar
  41. 41.
    Loth, S., von Bergmann, K., Ternes, M., Otte, A.F., Lutz, C.P., Heinrich, A.J.: Controlling the state of quantum spins with electric currents. Nat. Phys. 6, 340 (2010)CrossRefGoogle Scholar
  42. 42.
    Burgess, J.A.J., Malavolti, L., Lanzilotto, V., Mannini, M., Yan, S., Ninova, S., Totti, F., Rolf-Pissarczyk, S., Cornia, A., Sessoli, R., Loth, S.: Magnetic fingerprint of individual Fe\(_4\) molecular magnets under compression by a scanning tunnelling microscope. Nat. Commun. 6, 8216 (2015)CrossRefGoogle Scholar
  43. 43.
    Manassen, Y., Hamers, R.J., Demuth, J.E., Castellano Jr., A.J.: Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531 (1989)CrossRefGoogle Scholar
  44. 44.
    Kochanski, G.P.: Nonlinear alternating-current tunneling microscopy. Phys. Rev. Lett. 62, 2285 (1989)CrossRefGoogle Scholar
  45. 45.
    Chilla, E., Rohrbeck, W., Fröhlich, H.J., Koch, R., Rieder, H.: Probing of surface acoustic-wave fields by a novel scanning tunneling microscopy technique–effects of topography. Appl. Phys. Lett. 61, 3107 (1992)CrossRefGoogle Scholar
  46. 46.
    Chilla, E., Rohrbeck, W., Fröhlich, H.J., Koch, R., Rieder, H.: Scanning tunnelling microscopy of rf oscillating surfaces. Ann. Phys. 3, 21 (1994)CrossRefGoogle Scholar
  47. 47.
    Hesjedal, T., Chilla, E., Fröhlich, H.-J.: Probing of oscillating surfaces by a scanning acoustic tunneling microscope. Thin Solid Films 264, 226 (1995)CrossRefGoogle Scholar
  48. 48.
    Manassen, Y.: Real-time response and phase-sensitive detection to demonstrate the validity of ESR-STM results. J. Magn. Reson. 126, 133 (1997)CrossRefGoogle Scholar
  49. 49.
    Manassen, Y., Mukhopadhyay, I., Rao, N.R.: Electron-spin-resonance STM on iron atoms in silicon. Phys. Rev. B 61, 16223 (2000)CrossRefGoogle Scholar
  50. 50.
    Szuchmacher Blum, A.: Schafer, A.J.D., Engel, T.: An ACSTM study of mineral sulfides and the tip induced oxidation of PbS. J. Phys. Chem. B 106, 8197 (2002)CrossRefGoogle Scholar
  51. 51.
    Voigt, P.U., Koch, R.: Quantitative geometry of the Rayleigh wave oscillation ellipse by surface acoustic wave scanning tunneling microscopy. J. Appl. Phys. 92, 7160 (2002)CrossRefGoogle Scholar
  52. 52.
    Durkan, C., Welland, M.E.: Electronic spin detection in molecules using scanning-tunneling- microscopy-assisted electron-spin resonance. Appl. Phys. Lett. 80, 458 (2002)CrossRefGoogle Scholar
  53. 53.
    Spietz, L., Lehnert, K.W., Siddiqi, I., Schoelkopf, R.J.: Science 300, 1929 (2003)CrossRefGoogle Scholar
  54. 54.
    Durkan, C.: Detection of single electronic spins by scanning tunneling microscopy. Contemp. Phys. 45, 1 (2004)CrossRefGoogle Scholar
  55. 55.
    Lee, J., Tu, X., Ho, W.: Spectroscopy and microscopy of spin-sensitive rectification current induced by microwave radiation. Nano Lett. 5, 2613 (2005)CrossRefGoogle Scholar
  56. 56.
    Nishitani, R., Begum, F., Iwasaki, H.: Alternating current of scanning tunneling microscope for organic molecules adsorbed on metal in terms of equivalent circuit of scanning tunneling microscope. Jpn. J. Appl. Phys. 45, 1962 (2006)CrossRefGoogle Scholar
  57. 57.
    Tu, X.W., Lee, J.H., Ho, W.: Atomic-scale rectification at microwave frequency. J. Chem. Phys. 124, 021105 (2006)CrossRefGoogle Scholar
  58. 58.
    Messina, P., Mannini, M., Caneschi, A., Gatteschi, D., Sorace, L., Pittana, P., Manassen, Y.: Spin noise fluctuations from paramagnetic molecular adsorbates on surfaces. J. Appl. Phys. 101, 053916 (2007)CrossRefGoogle Scholar
  59. 59.
    Mannini, M., Messina, P., Sorace, L., Gorini, L., Fabrizioli, M., Caneschi, A., Manassen, Y., Sigalotti, P., Pittana, P., Gatteschi, D.: Addressing individual paramagnetic molecules through ESN-STM. Inorg. Chim. Acta. 360, 3837 (2007)CrossRefGoogle Scholar
  60. 60.
    Kemiktarak, U., Ndukum, T., Schwab, K.C., Ekinci, K.L.: Radio-frequency scanning tunnelling microscopy. Nature (London) 450, 85 (2007)CrossRefGoogle Scholar
  61. 61.
    Komeda, T., Manassen, Y.: Distribution of frequencies of a single precessing spin detected by scanning tunneling microscope. Appl. Phys. Lett. 92, 212506 (2008)CrossRefGoogle Scholar
  62. 62.
    Sainoo, Y., Isshiki, H., Shahed, S.M.F., Takaoka, T., Komeda, T.: Atomically resolved Larmor frequency detection on Si(111)-7\(\times \)7 oxide surface. Appl. Phys. Lett. 95, 082504 (2009)CrossRefGoogle Scholar
  63. 63.
    Mugnaini, V., Fabrizioli, M., Ratera, I., Mannini, M., Caneschi, A., Gatteschi, D., Manassen, Y., Veciana, J.: Towards the detection of single polychlorotriphenylmethyl radical derivatives by means of electron spin noise STM. Solid State Sci. 11, 956 (2009)CrossRefGoogle Scholar
  64. 64.
    Krukowski, P., Olejniczak, W., Klusek, Z., Pawlowski, S., Kobierski, P., Puchalski, M.: An ESN-STM spectrometer for single spin detection. Measurement 43, 1495 (2010)CrossRefGoogle Scholar
  65. 65.
    Loth, S., Etzkorn, M., Lutz, C.P., Eigler, D.M., Heinrich, A.J.: Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628 (2010)CrossRefGoogle Scholar
  66. 66.
    Moult, I., Hervé, M., Pennec, Y.: Ultrafast spectroscopy with a scanning tunneling microscope. Appl. Phys. Lett. 98, 233103 (2011)CrossRefGoogle Scholar
  67. 67.
    Saunus, C., Bindel, J.R., Pratzer, M., Morgenstern, M.: Versatile scanning tunneling microscopy with 120ps time resolution. Appl. Phys. Lett. 102, 051601 (2013)CrossRefGoogle Scholar
  68. 68.
    Müllegger, S., Rashidi, M., Mayr, K., Fattinger, M., Ney, A., Koch, R.: Radio-wave oscillations of molecular-chain resonators. Phys. Rev. Lett. 112, 117201 (2014)CrossRefGoogle Scholar
  69. 69.
    Müllegger, S., Das, A.K., Mayr, K., Koch, R.: Radio-frequency excitation of single molecules by scanning tunnelling microscopy. Nanotechnology 25, 135705 (2014)CrossRefGoogle Scholar
  70. 70.
    Manassen, Y., Averbukh, M., Morgenstern, M.: Analyzing multiple encounter as a possible origin of electron spin resonance signals in scanning tunneling microscopy on Si(111) featuring C and O defects. Surf. Sci. 623, 47 (2014)CrossRefGoogle Scholar
  71. 71.
    Müllegger, S., Tebi, S., Das, A.K., Schöfberger, W., Faschinger, F., Koch, R.: Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance. Phys. Rev. Lett. 113, 133001 (2014)CrossRefGoogle Scholar
  72. 72.
    Baumann, S., Paul, W., Choi, T., Lutz, C.P., Ardavan, A., Heinrich, A.J.: Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417 (2015)CrossRefGoogle Scholar
  73. 73.
    Hervé, M., Peter, M., Wulfhekel, W.: High frequency transmission to a junction of a scanning tunneling microscope. Appl. Phys. Lett. 104, 093101 (2015)CrossRefGoogle Scholar
  74. 74.
    Akitt, J.W., Mann, B.E.: NMR and Chemistry. Stanley Thornes, Cheltenham, UK (2000)Google Scholar
  75. 75.
    Weil, J.A., Bolton, J.R.: Electron Spin Resonance: Elementary Theory and Practical Applications, 2nd edn. Wiley Interscience, Wiley, New Jersey (2007)Google Scholar
  76. 76.
    McRobbie, D.W., Moore, E.A., Graves, M.J., Prince, M.R.: MRI from Picture to Proton. Cambridge University Press, Cambridge (2002)Google Scholar
  77. 77.
    Levitt, M.H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd edn. Wiley (2008)Google Scholar
  78. 78.
    Müllegger, S., Rauls, E., Gerstmann, U., Tebi, S., Serrano, G., Wiespointner-Baumgarthuber, S., Schmidt, W.G., Koch, R.: Mechanism for nuclear and electron spin excitation by radio frequency current. Phys. Rev. B 92, 220418(R) (2015)CrossRefGoogle Scholar
  79. 79.
    Balatsky, A.V., Nishijima, M., Manassen, Y.: Electron spin resonance-scanning tunneling microscopy. Adv. Phys. 61, 117 (2012)CrossRefGoogle Scholar
  80. 80.
    Schoelkopf, R.J., Wahlgren, P., Kozhevnikov, A.A., Delsing, P., Prober, D.E.: The Radio-Frequency Single-Electron Transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238 (1998)CrossRefGoogle Scholar
  81. 81.
    Chen, C.J.: Introduction to Scanning Tunneling Microscopy, 2nd edn. Oxford University Press, New York (2008)Google Scholar
  82. 82.
    Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)CrossRefGoogle Scholar
  83. 83.
    Gupta, A., Akin, D., Bashir, R.: Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976 (2004)CrossRefGoogle Scholar
  84. 84.
    Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583 (2006)CrossRefGoogle Scholar
  85. 85.
    Saenz, J.J., Garcia, N., Grtter, P., Meyer, E., Heinzelmann, H., Wiesendanger, R., Rosenthaler, L., Hidber, H.R., Gntherodt, H.J.: Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 62, 4293 (1987)CrossRefGoogle Scholar
  86. 86.
    Bocko, M.F., Onofrio, R.: On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress. Rev. Mod. Phys. 68, 755 (1996)CrossRefGoogle Scholar
  87. 87.
    Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature (London) 430, 329 (2004)CrossRefGoogle Scholar
  88. 88.
    Braginsky, V.B., Khalili, F.Y.: In: Thorne, K.S. (ed.) Quantum Measurement. Cambridge University Press, Cambridge (1992)Google Scholar
  89. 89.
    Blencowe, M.: Quantum electromechanical systems. Phys. Rep. 395, 159 (2004)CrossRefGoogle Scholar
  90. 90.
    Brown, K.R., Ospelkaus, C., Colombe, Y., Wilson, A.C., Leibfried, D., Wineland, D.J.: Coupled quantized mechanical oscillators. Nature (London) 471, 196 (2011)CrossRefGoogle Scholar
  91. 91.
    Chan, J., Mayer Alegre, T.P., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature (London) 478, 89 (2011)CrossRefGoogle Scholar
  92. 92.
    Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep. 511, 273 (2012)CrossRefGoogle Scholar
  93. 93.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)CrossRefGoogle Scholar
  94. 94.
    Koelsch, C.F.J.: Syntheses with triarylvinylmagnesium bromides. \(\alpha , \gamma \)-Bisdiphenylen-\(\beta \)-phenylallyl, a stable free radical. Am. Chem. Soc. 79, 4439 (1957)Google Scholar
  95. 95.
    Chen, W., Madhavan, V., Jamneala, T., Crommie, M.F.: Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 80, 1469 (1998)CrossRefGoogle Scholar
  96. 96.
    Wang, X.Q.: Anomalous surface phonons of the reconstructed Au(111): a molecular-dynamics simulation. Phys. Rev. Lett. 67, 1294 (1991)CrossRefGoogle Scholar
  97. 97.
    Billah, K.Y., Scanlan, R.H.: Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. Am. J. Phys. 59, 118 (1991)CrossRefGoogle Scholar
  98. 98.
    Thiele, S., Vincent, R., Holzmann, M., Klyatskaya, S., Ruben, M., Balestro, F., Wernsdorfer, W.: Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett. 111, 037203 (2013)CrossRefGoogle Scholar
  99. 99.
    Komeda, T., Isshiki, H., Liu, J., Katoh, K., Yamashita, M.: Variation of Kondo temperature induced by molecule-substrate decoupling in film formation of bis(phthalocyaninato)terbium(III) molecules on Au(111). ACS Nano 27, 4866 (2014)CrossRefGoogle Scholar
  100. 100.
    Ishikawa, N., Sugita, M., Wernsdorfer, W.: Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem., Int. Ed. Engl. 44, 2931 (2005)CrossRefGoogle Scholar
  101. 101.
    Stoll, S., Schweiger, A.: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42 (2006)CrossRefGoogle Scholar
  102. 102.
    Thiele, S., Balestro, F., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W.: Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135 (2014)CrossRefGoogle Scholar
  103. 103.
    Urdampilleta, M., Klyatskaya, S., Ruben, M., Wernsdorfer, W.: Landau-Zener tunneling of a single Tb\(^{3+}\) magnetic moment allowing the electronic read-out of a nuclear spin. Phys. Rev. B 87, 195412 (2013)CrossRefGoogle Scholar
  104. 104.
    Katoh, K., Yoshida, Y., Yamashita, M., Miyasaka, H., Breedlove, B.K., Kajiwara, T., Takaishi, S., Ishikawa, N., Isshiki, H., Zhang, Y.F., Komeda, T., Yamagishi, M., Takeya, J.: Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J. Am. Chem. Soc. 131, 9967 (2009)CrossRefGoogle Scholar
  105. 105.
    Fu, Y.-S., Schwbel, J., Hla, S.-W., Dilullo, A., Hoffmann, G., Klyatskaya, S., Ruben, M., Wiesendanger, R.: Reversible chiral switching of bis(phthalocyaninato) terbium(III) on a metal surface. Nano Lett. 12, 3931 (2012)CrossRefGoogle Scholar
  106. 106.
    Lodi Rizzini, A., Krull, C., Balashov, T., Kavich, J.J., Mugarza, A., Miedema, P.S., Thakur, P.K., Sessi, V., Klyatskaya, S., Ruben, M., Stepanow, S., Gambardella, P.: Coupling single molecule magnets to ferromagnetic substrates. Phys. Rev. Lett. 107, 177205 (2011)CrossRefGoogle Scholar
  107. 107.
    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature (London) 488, 357 (2012)CrossRefGoogle Scholar
  108. 108.
    Kitagawa, Y., Kawakami, T., Yamanaka, A., Okumura, M.: DFT and DFT-D studies on molecular structure of double-decker phthalocyaninato-terbium(III) complex. Mol. Phys. 112, 995 (2014)CrossRefGoogle Scholar
  109. 109.
    Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532 (2000)CrossRefGoogle Scholar
  110. 110.
    Schwab, K.C., Roukes, M.L.: Putting mechanics into quantum mechanics. Phys. Today 58, 36 (2005)CrossRefGoogle Scholar
  111. 111.
    Garanin, D.A., Chudnovsky, E.M.: Angular momentum in spin-phonon processes. Phys. Rev. B 92, 024421 (2015)CrossRefGoogle Scholar
  112. 112.
    Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Semiconductor and Solid State Physics, Johannes Kepler UniversityLinzAustria

Personalised recommendations