Advertisement

Addressing a Single Molecular Spin with Graphene-Based Nanoarchitectures

  • A. Candini
  • S. Lumetti
  • C. Godfrin
  • F. Balestro
  • W. Wernsdorfer
  • S. Klyatskaya
  • M. Ruben
  • M. AffronteEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Finding reliable methods to exploit molecular degrees of freedom represents an intriguing problem involving the control of new mechanisms at the nanoscale and several technological challenges. Here, we report a novel approach to address a single molecular spin embedded in an electronic circuit. Our devices make use of molecules with well-defined magnetic anisotropy (TbPc2) embedded in nanogapped electrodes obtained by electroburning graphene layers. Such devices work as molecular spin transistors allowing the detection of the Tb spin flip during the sweep of an external magnetic field. The spin readout is made by the molecular quantum dot that, in turns, is driven by an auxiliary gate voltage. In the general context of (spin-)electronics, these results demonstrate that: (1) molecular quantum dots can be used as ultra-sensitive detectors for spin flip detection and (2) the use of graphene electrodes as a platform to contact organometallic molecules is a viable route to design more complex nanoarchitectures.

Keywords

Molecular spin transistor Graphene-based nanojunctions Molecular quantum dots 

Notes

Acknowledgements

This work has been partially supported by European Community through the FET-Proactive Project “MoQuaS,” contract N.610449; by the Italian Ministry for Research (MIUR) through the FIR grant RBFR13YKWX; and by the French Agency for Research through the ANR-12-JS10-007 SINUSManip, ANR-13-BS10-0001MolQuSpin projects and the Alexander von Humboldt foundation. We thank E. Bonet (Institut Néel, Grenoble, France) for help in software development, C. Coletti (IIT Pisa, Italy) for providing the graphene substrates and P. Pingue and F. Carillo (Scuola Normale Superiore di Pisa, Italy) for assistance in sample fabrication.

References

  1. 1.
    Sun, L., Diaz-Fernandez, Y.A., Gschneidtner, T.A., Westerlund, F., Lara-Avila, S. Moth-Poulsen, K.: Chem. Soc. Rev. 43, 7378–7411 (2014). doi: 10.1039/c4cs00143e
  2. 2.
    Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974). doi: 10.1016/0009-2614(74)85031-1
  3. 3.
    Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P., McEuen, P.L.: Nature 407, 57 (2000). doi: 10.1038/35024031
  4. 4.
    Osorio, E.A., O’Neill, K., Stuhr-Hansen, N., Nielsen, O.F., Bjørnholm, T., van der Zant, H.S.J.: Adv. Mater. 19 (2), 281 (2007). doi: 10.1002/adma.200601876
  5. 5.
    Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Bredas, N., Stuhr-Hansen, J.L., Hedegard, P., Bjørnholm, T.: Nature 425, 698 (2003). doi: 10.1038/nature02010
  6. 6.
    Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abruna, H.D., McEuen, P.L., Ralph, D.C.: Nature 417, 722 (2002). doi: 10.1038/nature00791
  7. 7.
    Liang, W.J., Shores, M.P., Bockrath, M., Long, J.R., Park, H.: Nature 417, 725 (2002). doi: 10.1038/nature00790
  8. 8.
    Lörtscher, E.: Nature Nanotechnol. 8, 381–384 (2013). doi: 10.1038/nnano.2013.105
  9. 9.
    Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, T.P., Allara, D.L., Tour J.M., Weiss, P.S.: Science 271, 1705–1707 (1996). doi: 10.1126/science.271.5256.1705
  10. 10.
    Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Science 278, 252–254 (1997). doi: 10.1126/science.278.5336.252
  11. 11.
    Park, H., Lim, A.K.L., Alivisatos, A.P., Park, J., McEuen, P.L.: Appl. Phys. Lett. 75, 301–303 (1999). doi: 10.1063/1.124354
  12. 12.
    Moth-Poulsen, K., Bjørnholm, T.: Nature Nanotechnol. 4, 551–556 (2009). doi: 10.1038/nnano.2009.176
  13. 13.
    Ratner, M.: Nat. Nanotechnol. 8, 378–381 (2013). doi: 10.1038/nnano.2013.110
  14. 14.
    Perrin, M.L., Verzijl, C.J.O., Martin, C.A., Shaikh, A.J., Eelkema, R., van Esch, J.H., van Ruitenbeek, J.M., Thijssen, J.M., van der Zant, H.S.J., Dulić, D., Nature Nanotechnol. 8, 282–287 (2013)Google Scholar
  15. 15.
    Bergvall, A., Berland, K., Hyldgaard, P., Kubatkin, S., Löfwander, T.: Phys. Rev. B 84, 155451 (2011). doi: 10.1103/PhysRevB.84.155451
  16. 16.
    García-Suárez, V.M, Ferradás, R., Carrascal, D., Ferrer, J., Phys. Rev. B 87, 235425 (2013). doi: 10.1103/PhysRevB.87.235425
  17. 17.
    Ryndyk, D.A., Bundesmann, J., Liu, M.-H., Richter, K.: Phys. Rev. B 86, 195425 (2012), doi: 10.1103/PhysRevB.86.195425
  18. 18.
    Péterfalvi, C. G., Lambert, C. J.: Phys. Rev. B 86, 085443 (2012), doi: 10.1103/PhysRevB.86.085443
  19. 19.
    Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R., Scheicher, R.H.: J. Phys. Chem. C 117, 15421–15428 (2013). doi: 10.1021/jp4048743
  20. 20.
    Pshenichnyuk, I.A., Coto, P. B., Leitherer, S., Thoss, M.: J. Phys. Chem. Lett. 4, 809–814 (2013). doi: 10.1021/jz400025q
  21. 21.
    Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., van der Zant, H.S.J.: Nano Lett. 11, 4607–4611 (2011). doi: 10.1021/nl202065x
  22. 22.
    Cao, Y., Dong, S., Liu, S., He, L., Gan, L., Yu, X., Steigerwald, M. L., Wu, X., Liu, Z., Guo, X.: Angew. Chem. Int. Ed. 51, 12228–12232 (2012). doi: 10.1002/anie.201205607
  23. 23.
    Jia, C., Wang, J., Yao, C., Cao, Y., Zhong, Y., Liu, Z., Liu, Z., Guo, X.: Angew. Chem. Int. Ed. 52, 1–6 (2013). doi: 10.1002/anie.201304301
  24. 24.
    Cao, Y., Dong, S., Liu, S., Liu, Z., Guo, X.: Angew. Chem. Int. Ed. 52, 3906–3910 (2013). doi: 10.1002/anie.201208210
  25. 25.
    Burzurí, E., Prins, F., van der Zant, H.S.J., Graphene 01, 26–29 (2012). doi: 10.4236/graphene.2012.12004
  26. 26.
    Nef, C., Pósa, L., Makk, P., Fu, W., Halbritter, A., Schönenberger, C., Michel, C.: Nanoscale 6, 7249–7254 (2014). doi: 10.1039/c4nr01838a
  27. 27.
    Lau, C.S., Mol, J.A., Warner, J.H., Briggs, G.A.D.: Phys. Chem. Chem. Phys. 16, 20398–20401 (2014). doi: 10.1039/c4cp03257h
  28. 28.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hee, B.: Nature 457, 706 (2009). doi: 10.1038/nature07719
  29. 29.
    Zyasin, A.S., van den Berg, J.W.G., Osorio, E.A., van der Zant, H.S.J., Konstantinidis, N.P., Leijnse, M., Wegewijs, M.R., May, F., Hofstetter, W., Danieli C., Cornia A.: Nano Lett. 10, 3307 (2010). doi: 10.1021/nl1009603
  30. 30.
    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Nature 488, 357 (2012). doi: 10.1038/nature11341
  31. 31.
    Burzurí, E., Zyasin, A.S., Cornia, A., van der Zant, H.S.J.: Phys. Rev. Lett. 109, 147203 (2012). doi: 10.1103/PhysRevLett.109.147203
  32. 32.
    Bogani, L., Wernsdorfer, W.: Nat. Mater. 7, 179–186 (2008). doi: 10.1038/nmat2133
  33. 33.
    Thiele, S., Balestro, F., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer W.: Science 344, 1135–1138 (2014). doi: 10.1126/science.1249802
  34. 34.
    Forbeaux, I., Themlin, J.M., Debever, J.M.: Phys. Rev. B 58, 16396–16406 (1998). doi: 10.1103/PhysRevB.58.16396
  35. 35.
    Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: J. Phys. Chem. B 108, 19912–19916 (2004). doi: 10.1021/jp040650f
  36. 36.
    Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Science 313, 951–954 (2006). doi: 10.1126/science.1130681
  37. 37.
    Virojanadara, C., Syväjarvi, M., Yakimova, R., Johansson, L.I., Zakharov, A.A., Balasubramanian, T.: Phys. Rev. B, 78, 245403 (2008). doi: 10.1103/PhysRevB.78.245403
  38. 38.
    Hanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K.: Rev. Mod. Phys. 79, 1217–1265 (2007). doi: 10.1103/RevModPhys.79.1217
  39. 39.
    Candini, A., Klar, D., Marocchi, S., Corradini, V., Biagi, R., De Renzi, V., del Pennino, U., Troiani, F., Bellini, V., Klyatskaya, S., Ruben, M., Kummer, K., Brookes, N.B., Huang, H., Soncini, A., Wende, H., Affronte, M.: Sci. Rep. 6, 21740 (2016)Google Scholar
  40. 40.
    Frewin, C.L., Coletti C., Riedl, C., Strake, U., Saddow, S.E.: Mater. Sci. Forum 615–617, 589-592 (2009). doi: 10.4028/www.scientific.net/MSF.615-617.589
  41. 41.
    Starke, U., Forti, S., Emtsev, K.V., Coletti, C.: MRS Bull. 37, 1177–1186 (2012). doi: 10.1557/mrs.2012.272
  42. 42.
    Convertino, D., A. Rossi., V. Miseikis, V., Piazza, C., Coletti., Thermal decomposition and chemical vapor deposition: a comparative study of multi-layer growth of graphene on SiC(000-1). MRS Advances 1 (55), 3667–3672 (2016)Google Scholar
  43. 43.
    Shivaraman, S., Chandrashekhar, M.V.S., Boeckl, J.J., Spencer, M.G.J.: Electron. Mater. 38, 725–730 (2009). doi: 10.1007/s11664-009-0803-6
  44. 44.
    Candini, A., Richter, N., Convertino, D., Coletti, C., Balestro, F., Wernsdorfer, W., Kläui, M., Affronte, M.: Beilstein J. Nanotechnol. 6, 711–719 (2015). doi: 10.3762/bjnano.6.72
  45. 45.
    Prins, F., Hayashi, T., van Steenwijk, B.J.A.D., Gao, B., Osorio, E.A., Muraki, K., van der Zant, H.S.J.: Appl. Phys. Lett. 94, 123108 (2009). doi: 10.1063/1.3109784
  46. 46.
    Moser, J., Barreiro, A., Bachtold A.: Appl. Phys. Lett. 91, 163513 (2007). doi: 10.1063/1.2789673
  47. 47.
    Zhu, P., Lu, F., Pan, N., Arnold, D. P., Zhang, S., Jiang, J., Eur. J. Inorg. Chem. 2004, 510–517 (2004). doi: 10.1002/ejic.200300509
  48. 48.
    Ishikawa, N., Sugita, M., Okubo, T., Tanaka, N., Iino, T., Kaizu, Y., Inorg. Chem. 42, 2440–2446 (2003). doi: 10.1021/ic026295u
  49. 49.
    Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions (Oxford Classic Texts in the Physical Sciences). Oxford University Press, New York (2012). ISBN 978-0-19-965152-8Google Scholar
  50. 50.
    Ishikawa, N., Sugita, M., Wernsdorfer, W.: Angew. Chem. Int. Ed. 44(19), 2931–2935 (2005). doi: 10.1002/anie.200462638
  51. 51.
    Stevens, K. W. H.: Proc. Phys. Soc. A 65, 209–215 (1952). doi: 10.1088/0370-1298/65/3/308
  52. 52.
    Koike, N., Uekusa, H., Ohashi, Y., Harnoode, C., Kitamura, F., Ohsaka, T., Tokuda, K.: Inorg. Chem. 35(20), 5798–5804 (1996). doi: 10.1021/ic960158d
  53. 53.
    Landau, L.D.: Phys. Sov. Union 2, 46–51 (1932)Google Scholar
  54. 54.
    Zener, C.: Proc. R. Soc. Lond. A 137, 696–702 (1932). doi: 10.1098/rspa.1932.0165
  55. 55.
    Stepanow, S., Honolka, J., Gambardella, P., Vitali, L., Abdurakhmanova, N., Tseng, T.-C., Rauschenbach, S., Tait, S.L., Sessi, V., Klyatskaya, S., Ruben, M., Kern, K.: J. Am. Chem. Soc. 132(34), 11900–11901 (2010). doi: 10.1021/ja105124r
  56. 56.
    Sorace, L., Benelli, C., Gatteschi, D.: Chem. Soc. Rev. 40, 3092–3104 (2011). doi: 10.1039/C0CS00185F
  57. 57.
    Gopakumar, T.G., Muller, F., Hietschold, M.: J. Phys. Chem. B 110, 6051–6065 (2006). doi: 10.1021/jp060936f
  58. 58.
    Klar, D., Candini, A., Joly, L., Klyastkaya, S., Krumme, B., Ohresser, P., Kappler, J.-P., Ruben, M., Wende, H.: Dalton Trans. 43, 10686–10689 (2014)Google Scholar
  59. 59.
    Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Affronte, M.: Nano Lett. 11, 2634–2639 (2011). doi: 10.1021/nl2006142
  60. 60.
    Scott, D.G., Natelson, D.: ACS Nano 4(7), 3560–3579 (2010). doi: 10.1021/nn100793s
  61. 61.
    Vitali, L., Fabris, S., Conte, A.M., Brink, S., Ruben, M., Baroni, S., Kern, K., Nano Lett. 8, 3364–3368 (2008). doi: 10.1021/nl801869b

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. Candini
    • 1
  • S. Lumetti
    • 1
    • 2
  • C. Godfrin
    • 3
    • 4
  • F. Balestro
    • 3
    • 4
    • 5
  • W. Wernsdorfer
    • 3
    • 4
    • 6
  • S. Klyatskaya
    • 6
  • M. Ruben
    • 6
    • 7
  • M. Affronte
    • 1
    • 2
    Email author
  1. 1.CNRIstituto Nanoscienze, Centro S3ModenaItaly
  2. 2.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
  3. 3.Institut NéelUniversité Grenoble AlpesGrenobleFrance
  4. 4.CNRSInstitut NéelGrenobleFrance
  5. 5.Institut Universitaire de FranceParisFrance
  6. 6.Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  7. 7.Institut de Physique et Chimie Des Matériaux de StrasbourgStrasbourg Cedex 2France

Personalised recommendations