Emerging Computations on Nano-Electronic Circuits and Devices

  • Takahide OyaEmail author
  • Tetsuya Asai
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


Novel and functional nonlinear nano-electronic circuits and devices based on “nature-inspired” and “bio-mimetic” techniques are discussed. The targeted nano-electronic devices are single-electron devices, in particular. A significant factor in the production of nature-inspired and bio-mimetic circuits or devices is the accuracy with which the natural world phenomena and the biological behaviors relate to the targeted nanodevices. To construct nature-inspired or bio-mimetic circuits, “perfect mimicking” and “rough mimicking” techniques can be used. Nature-inspired and bio-mimetic single-electron circuits are described as demonstrations. These demonstrations indicate that the circuits based on the proposed approaches are representative of the nature-inspired and bio-mimetic circuits and are useful and functional devices. Although single-electron circuits are targeted here, the concepts introduced, namely, the perfect and rough mimicking techniques, can be applied not only to single-electron circuits but to other devices also.



The authors are grateful to the students and graduates of Oya laboratory, Yokohama National University, Japan, for their support. This work was partly supported by JSPS KAKENHI, Grant Numbers 25110015 and 15K06011.


  1. 1.
    Gravert, H., Devoret, M.H.: Single Charge Tunneling-Coulomb Blockade Phenomena in Nanostructures. Plenum, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Oya, T., Asai, T., Fukui, T., Amemiya, Y.: Reaction-diffusion systems consisting of single-electron circuits. Int. J. Unconventional Comput. 1(2), 177–194 (2005)Google Scholar
  3. 3.
    Satomi, K., Asai, T., Oya, T.: Design of slime-mold-inspired single-electron circuit. In: 14th Int’l Conference on Unconventional and Natural Computation (2015)Google Scholar
  4. 4.
    Hamana, Y., Asai, T., Oya, T.: Design of new logic circuit mimicking soldier crab ball gate for single-molecule device. In: The Int’l Chemical Congress of Pacific Basin Societies 2015, (2015)Google Scholar
  5. 5.
    Obi, Y., Oya, T.: Novel single-electron information-processing circuits mimicking behavior of ant groups. In: Proceedings of the Int’l Symposium on Circuits and Systems, pp. 1424–1427 (2014)Google Scholar
  6. 6.
    Kurotaki, D., Oya, T.: Noise redundancy of a single-electron depressing-synapse network. In: Digest of Papers: 2009 International Microprocesses and Nanotechnology Conference, pp. 248–249 (1995)Google Scholar
  7. 7.
    Murakami, Y., Oya, T.: Study of two-dimensional device-error-redundant single-electron oscillators system. In: Proceedings of SPIE, Nanoengineering: Fabrication, Properties, Optics, and Devices IX, vol. 8463, pp. 84631E (2012)Google Scholar
  8. 8.
    Otake, H., Asai, T., Oya, T.: Study of thermal-noise-assisted signal propagation of neuromorphic single-electron circuit. In: Proceedings of the 2014 Int’l Conference on Parallel and Distributed Processing Techniques and Applications, vol. 1, p. 603 (2014)Google Scholar
  9. 9.
    Takano, M., Asai, T., Oya, T.: Design of nano-electronic neural-network associative memory circuit. In: 14th Int’l Conference on Unconventional and Natural Computation (2015)Google Scholar
  10. 10.
    Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: maze-solving by an amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  11. 11.
    Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327, 439–442 (2010)CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Ricigliano, V., Chitaman, J., Tong, J., Adamatzky, A., Howarth, D.G.: Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum. Front. Microbiol. 6(720), 10 pages (2015)Google Scholar
  15. 15.
    Gunji, Y.-P., Nishiyama, Y., Adamatzky, A.: Robust soldier crab ball gate. Complex Syst. 20, 93–104 (2011)Google Scholar
  16. 16.
    Nishiyama, Y., Gunji, Y.-P., Adamatzky, A.: Collision-based computing implemented by soldier crab swarms. Int. J. Parallel, Emergent Distrib. Syst. 28, 67–74 (2013)Google Scholar
  17. 17.
    Adamatzky, A.: Collision-Based Computing. Springer, London (2002)CrossRefGoogle Scholar
  18. 18.
    Wilson, E.O.: Chemical communication in the social insects. Science 149(3688), 1064–1071 (1965)CrossRefGoogle Scholar
  19. 19.
    Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)CrossRefGoogle Scholar
  20. 20.
    Levin, J.E., Miller, J.P.: Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380, 165–168 (1996)CrossRefGoogle Scholar
  21. 21.
    Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., Moss, F.: Visual perception of stochastic resonance. Phys. Rev. Lett. 78(6), 1186–1189 (1997)CrossRefGoogle Scholar
  22. 22.
    Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Science 223(4764), 625–633 (1986)CrossRefGoogle Scholar
  23. 23.
    Aarts, E., Koast, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, New York (1989)Google Scholar
  24. 24.
    Oya, T., Asai, T., Fukui, T., Amemiya, Y.: A majority-logic nanodevice using a balanced pair of single-electron boxes. J. Nanosci. Nanotechnol. 2(3/4), 333–342 (2002)CrossRefGoogle Scholar
  25. 25.
    Oya, T., Asai, T., Fukui, T., Amemiya, Y.: A majority-logic device using an irreversible single-electron box. IEEE Trans. Nanotech. 2, 15–22 (2003)CrossRefGoogle Scholar
  26. 26.
    Gunji, Y.P., Nishiyama, Y., Adamatzky, A.: Robust soldier crab ball gate. Complex Syst. 20, 93–104 (2011)Google Scholar
  27. 27.
    Collins, J.J., Chow, C.C., Imhoff, T.T.: Stochastic resonance without tuning. Nature 376, 236–238 (1995)CrossRefGoogle Scholar
  28. 28.
    Oya, T.: Noise-supported operations of neuromorphic single-electron circuits. In: Conference Proceedings 2009 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 359–362 (2009)Google Scholar
  29. 29.
    Ito, T., Oya, T.: Thermal-noise-driven single-electron majority-logic circuits. In: Abstract Book: Nanoelectronics Days 2010, p. 73 (2010)Google Scholar
  30. 30.
    Oya, T.: Thermal-noise-exploiting operations of single-electron majority logic circuits with conventional clock signals. IEEE Trans. Nanotech. 11, 134–138 (2012)CrossRefGoogle Scholar
  31. 31.
    Murakami, Y., Oya, T.: Study of two-dimensional, device-error-redundant single-electron oscillators system. Proc. SPIE 8463, 84631E_1–84631E_8 (2012)Google Scholar
  32. 32.
    Otake, H., Ishimura, K., Asai, T., Oya, T.: Study of stochastic resonance in circular single-electron oscillator array. In: Proceedings of the 5th Int’l Conference Nanotech.: Fundamentals and Applications, pp. 235-1–235-2 (2014)Google Scholar
  33. 33.
    Sveholm, J., Hayakawa, Y., Nakajima, K.: Temporal sequence of patterns with an inverse function delayed neural network. Neural Netw. 9, 1477–1489 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Graduate School of EngineeringYokohama National UniversityHodogaya-ku, YokohamaJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversityKita-ku, SapporoJapan

Personalised recommendations