Advertisement

Coulomb-Blockade in Low-Dimensional Organic Conductors

  • Megumi Akai-KasayaEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

In organic materials, peculiar nonlinearity to current voltage appears, thought a general and comprehensive explanation has not been achieved. Generally, organic conductors have disorder structures so charge transfers from one place with high conductivity to another place with high conductivity. Conductive segments in poorly conductive organic materials are expected to have a smaller electrical capacity, leading to a higher critical temperature for the blockade effect. In such occasions, Coulomb blockade of charge transport takes place in organic conductors. In this chapter, experimental evidence to prove Coulomb blockade taking place on two-dimensional organic conducting polymer films and its theoretical evidence through quantum calculations and the verification of conductivity models are described. The significance of the blockade effect, i.e., the difficulty of charge injection from one conducting segment into another should be stressed, since this has not hitherto been taken into account when considering the charge transport mechanism in organic materials. By considering both the charge blockade effect and the influence of structural disorder, it is hoped that a clear understanding of charge transport in organic materials can be achieved.

References

  1. 1.
    Aleshin, A.N., Lee, H.J., Park, Y.W., Akagi, K.: Phys. Rev. Lett. 93, 196601 (2004)Google Scholar
  2. 2.
    Rahman, A., Sanyal, M.K.: J. Phys.: Condens. Matter 22, 175301 (2010)Google Scholar
  3. 3.
    Zhou, Z., Xiao, K., Jin, R., Mandrus, D., Tao, J., Geohegan, D., Pennycook, S.: Appl. Phys. Lett. 90, 193115 (2007)CrossRefGoogle Scholar
  4. 4.
    Yuen, J.D., Menon, R., Coates, N.E., Namdas, E.B., Cho, S., Hannahs, S.T., Moses, D., Heeger, A.J.: Nat. Mater. 8, 572 (2009)CrossRefGoogle Scholar
  5. 5.
    Kronemeijer, A.J., Huisman, E.H., Katsouras, I., van Hal, P.A., Geuns, T.C.T., Blom, P.W.M., van der Molen, S.J., de Leeuw, D.M.: Phys. Rev. Lett. 105, 156604 (2010)CrossRefGoogle Scholar
  6. 6.
    Worne, J.H., Anthony, J.E., Natelson, D.: Appl. Phys. Lett. 96, 053308 (2010)CrossRefGoogle Scholar
  7. 7.
    Bockrath, M., Cobden, D.H., Lu, J., Rinzler, A.G., Smalley, R.E., Balents, L., McEuen, P.L.: Nature 397, 598 (1999)CrossRefGoogle Scholar
  8. 8.
    Yao, Z., Postma, H.W.C., Balents, L., Dekker, C.: Nature 402, 273 (1999)CrossRefGoogle Scholar
  9. 9.
    Gao, B., Komnik, A., Egger, R., Glattli, D.C., Bachtold, A.: Phys. Rev. Lett. 92, 216804 (2004)CrossRefGoogle Scholar
  10. 10.
    Monteverde, M., Garbarino, G., Núñez-Regueiro, M., Souletie, J., Acha, C., Jing, X., Lu, L., Pan, Z.W., Xie, S.S., Egger, R.: Phys. Rev. Lett. 97, 176401 (2006)CrossRefGoogle Scholar
  11. 11.
    Zaitsev-Zotov, S.V., Kumzerov, Y.A., Firsov, Y.A., Monceau, P.: J. Phys.: Condens. Matter 12, L303 (2000)Google Scholar
  12. 12.
    Slot, E., Holst, M.A., van der Zant, H.S.J., Zaitsev-Zotov, S.V.: Phys. Rev. Lett. 93, 176602 (2004)CrossRefGoogle Scholar
  13. 13.
    Rodin, A.S., Fogler, M.M.: Phys. Rev. Lett. 105, 106801 (2010)CrossRefGoogle Scholar
  14. 14.
    Abdalla, H., de Ruit, K.V., Kemerink, M.: Sci. Rep. 5, 16870 (2015)CrossRefGoogle Scholar
  15. 15.
    Parthasarathy, R., Lin, X.-M., Jaeger, H.M.: Phys. Rev. Lett. 87, 186807 (2001)CrossRefGoogle Scholar
  16. 16.
    Reichhardt, C., Olson, C.J.: Phys. Rev. B 68, 163305 (2003)CrossRefGoogle Scholar
  17. 17.
    Fan, H., Yang, K., Boye, D.M., Sigmon, T., Malloy, K.J., Xu, H., López, G.P., Brinker, C.J.: Science 304, 567 (2004)CrossRefGoogle Scholar
  18. 18.
    Greshnykh, D., Frӧmsdorf, A., Weller, H., Kilinke, C.: Nano Lett. 9, 473 (2009)CrossRefGoogle Scholar
  19. 19.
    Xu, K., Qin, L., Heath, J.R.: Nat. Nanotechnol. 4, 368 (2009)CrossRefGoogle Scholar
  20. 20.
    Akai-Kasaya, M., Okuaki, Y., Nagano, S., Mitani, T., Kuwahara, Y.: Phys. Rev. Lett. 115, 196801 (2015)CrossRefGoogle Scholar
  21. 21.
    Middleton, A.A., Wingreen, N.S.: Phys. Rev. Lett. 71, 3198 (1993)CrossRefGoogle Scholar
  22. 22.
    Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Brédas, J.-L., Stuhr-Hansen, N., Hedegård, P., Bjørnholm, T.: Nature 425, 698 (2003)CrossRefGoogle Scholar
  23. 23.
    Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abruña, H.D., McEuen, P.L., Ralph, D.C.: Nature 417, 722 (2002)CrossRefGoogle Scholar
  24. 24.
    Aleshin, A.N., Lee, H.J., Jhang, S.H., Kim, H.S., Akagi, K., Park, Y.W.: Phys. Rev. B 72, 153202 (2005)CrossRefGoogle Scholar
  25. 25.
    Hirano, Y., Segawa, Y., Kawai, T., Matsumoto, T.: J. Phys. Chem. C 117, 140 (2013)CrossRefGoogle Scholar
  26. 26.
    Grabert, H., Devoret, M.H.: Single Charge Tunneling, Ch. 1. NATO ASI Series. Plenum, New York (1992)Google Scholar
  27. 27.
    Nagano, S., Seki, T., Ichimura, K.: Langmuir 17, 2199 (2001)CrossRefGoogle Scholar
  28. 28.
    Nagano, S., Kodama, S., Seki, T.: Langmuir 24, 10498 (2008)CrossRefGoogle Scholar
  29. 29.
    Toda, A., Nagano, S., Seki, T.: Synth. Met. 159, 835 (2009)CrossRefGoogle Scholar
  30. 30.
    Watanabe, S., Tanaka, H., Kuroda, S., Toda, A., Nagano, S., Seki, T., Kimoto, A., Abe, J.: Appl. Phys. Lett. 96, 173302 (2010)CrossRefGoogle Scholar
  31. 31.
    Higuchi, Y., Ohgami, N., Akai-Kasaya, M., Saito, A., Aono, M., Kuwahara, Y.: Jpn. J. Appl. Phys. 45, L145 (2006)CrossRefGoogle Scholar
  32. 32.
    Akai-Kasaya, M., Okuaki, Y., Nagano, S., Kuwahara, Y.: J. Phys. D Appl. Phys. 46, 425303 (2013)CrossRefGoogle Scholar
  33. 33.
    Kawanishi, T., Fujiwara, T., Akai-Kasaya, M., Saito, A., Aono, M., Takeya, J., Kuwahara, Y.: Appl. Phys. Lett. 93, 023303 (2008)CrossRefGoogle Scholar
  34. 34.
    Kiguchi, M., Takahashi, T., Takahashi, Y., Yamauchi, Y., Murase, T., Fujita, M., Tada, T., Watanabe, S.: Angew. Chem. Int. Ed. 50, 5708 (2011)CrossRefGoogle Scholar
  35. 35.
    Wu, S., González, M.T., Huber, R., Grunder, S., Mayor, M., Schönenberger, C., Calame, M.: Nat. Nanotech. 3, 569 (2008)CrossRefGoogle Scholar
  36. 36.
    Narumi, T., Suzuki, M., Hidaka, Y., Kai, S.: J. Phys. Soc. Jpn. 80, 114704 (2011)CrossRefGoogle Scholar
  37. 37.
    Wei, J.H., Gao, Y.L., Wang, X.R.: Appl. Phys. Lett. 94, 073301 (2009)CrossRefGoogle Scholar
  38. 38.
    Efros, A.L., Shklovskii, B.I.: J. Phys. C: Solid State Phys. 8, L49 (1975)CrossRefGoogle Scholar
  39. 39.
    Toussaint, G.T.: Pattern Recogn. 12, 261 (1980)CrossRefGoogle Scholar
  40. 40.
    Izumi, T., Kobashi, S., Takimiya, K., Aso, Y., Otsubo, T.: J. Am. Chem. Soc. 125, 5286 (2003)CrossRefGoogle Scholar
  41. 41.
    Delley, B.: J. Chem. Phys. 92, 508 (1990)CrossRefGoogle Scholar
  42. 42.
    Delley, B.: J. Chem. Phys. 113, 7756 (2000)CrossRefGoogle Scholar
  43. 43.
    Perdew, J.P., Burke, K., Ernzehof, M.: Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  44. 44.
    Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  45. 45.
    Skotheim, T.A., Elsenbaumer, R.L., Reynolds, H.J.R. (eds.): Handbook of Conductive Polymers, 2nd edn. Marcel Dekker, Inc., New York (1998)Google Scholar
  46. 46.
  47. 47.
    Parthasarathy, R., Lin, X.-M., Elteto, K., Rosenbaum, T.F., Jaeger, H.M.: Phys. Rev. Lett. 92, 076801 (2004)CrossRefGoogle Scholar
  48. 48.
    Elteto, K., Antonyan, E.G., Nguyen, T.T., Jaeger, H.M.: Phys. Rev. B 71, 64206 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Precision Science & Technology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations