Detection and Control of Charge State in Single Molecules Toward Informatics in Molecule Networks

  • Seiya KasaiEmail author
  • Shinya Inoue
  • Syoma Okamoto
  • Kentaro Sasaki
  • Xiang Yin
  • Ryota Kuroda
  • Masaki Sato
  • Ryo Wakamiya
  • Kenta Saito
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


One of the key components in the single-molecule-based informatics is the interface between the single-molecule and the conventional electronics. This component reads out the very small charge state of the molecule in real time and also controls the charge state. A big challenge here is the precise operation under various fluctuations. In this chapter, we describe our recent results on detection of molecule charge state using a III-V compound semiconductor nanowire field-effect transistor (FET) having a metal gate electrode. It is found that the metal gate enhances the sensitivity to the molecule charge in an electrostatic manner. The dynamics of the molecule charge state is detected in terms of the drain current noise. Our unique technique is applied to single-molecule identification and detection of spatial distribution of charges in a molecular network. Representation of information by controlling the molecule charge state under thermal fluctuation through the nonlinearity under the detailed balance condition is also discussed.



The authors sincerely thank Prof. S. W. Hwang of Korea University, Prof. T. Ogawa of Osaka University, Dr. M. Akai of Osaka University, and Dr. Z. Yatabe of Kumamoto University for valuable discussion. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (No. 25110001, No. 25110013).


  1. 1.
    Dennard R.H., Gaensslen F., Yu H-.N., Rideout, L., Bassous, E., LeBlanc, A.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Cir. SC–9(5), 668–678 (1974)Google Scholar
  2. 2.
    Grossman, L.: 2045: the year man becomes immortal. TIME, 10 Feb 2011.,9171,2048299,00.html (2011). Accessed 1 Feb 2016
  3. 3.
    Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of electrons to quantum corrals on a metal surface. Science 262(5131), 218–220 (1993)CrossRefGoogle Scholar
  4. 4.
    Müller, D.J., Dufrene, Y.F.: Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008)CrossRefGoogle Scholar
  5. 5.
    Gross, L.: Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3(4), 273–278 (2011)CrossRefGoogle Scholar
  6. 6.
    Wanekaya, A.K., Chen, W., Myung, N.V., Mulchandani, A.: Nanowire-based electrochemical biosensors. Electroanalysis 18(6), 533–550 (2006)CrossRefGoogle Scholar
  7. 7.
    Pud, S., Gasparyan, F., Petrychuk, M., Li, J., Offenhäusser, A., Vitusevich, S.A.: Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors. J. Appl. Phys. 115(23), 233705.1–11 (2014)Google Scholar
  8. 8.
    He, B., Morrow, T.J., Keating, C.D.: Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 12(5), 522–528 (2008)CrossRefGoogle Scholar
  9. 9.
    Wohlstadter, J.N., Wilbur, J.L., Sigal, G.B., Biebuyck, H.A., Billadeau, M.A., Dong, L., Fischer, A.B., Gudibande, S.R., Jameison, S.H., Kenten, J.H., Leginus, J., Leland, J.K., Massey, R.J., Wohlstadter, S.J.: Carbon nanotube-based biosensor. Adv. Mater. 15(14), 1184–1187 (2003)CrossRefGoogle Scholar
  10. 10.
    Besteman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A., Dekker, C.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003)CrossRefGoogle Scholar
  11. 11.
    Maehashi, K., Matsumoto, K.: Label-free electrical detection using carbon nanotube-based biosensors. Sensors 9, 5368–5378 (2009)CrossRefGoogle Scholar
  12. 12.
    Seol, M.L., Choi, S.J., Kim, C.H., Moon, D.I., Choi, Y.K.: Porphyrin-silicon hybrid field- effect transistor with individually addressable top-gate structure. ACS Nano 6(1), 183–189 (2012)CrossRefGoogle Scholar
  13. 13.
    Patolsky, F., Zheng, G., Lieber, C.M.: Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1, 1711–1724 (2006)CrossRefGoogle Scholar
  14. 14.
    Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1), 51–65 (2006)CrossRefGoogle Scholar
  15. 15.
    Kasai, S., Jinushi, K., Tomozawa, H., Hasegawa, H.: Fabrication and characterization of GaAs single electron devices having single and multiple dots based on Schottky in-plane-gate and wrap-gate control of two-dimensional electron gas. Jpn. J. Appl. Phys. 36, 1678–1685 (1997)CrossRefGoogle Scholar
  16. 16.
    Yumoto, M., Kasai, S., Hasegawa, H.: Gate control characteristics in GaAs nanometer-scale Schottky wrap gate structures. Appl. Surf. Sci. 190, 242–246 (2002)CrossRefGoogle Scholar
  17. 17.
    Yumoto, M., Kasai, S., Hasegawa, H.: Novel quantum wire branch-switches for binary decision diagram logic architecture utilizing schottky wrap-gate control of GaAs/AlGaAs nanowires. Jpn. J. Appl. Phys. 41, 2671–2674 (2002)CrossRefGoogle Scholar
  18. 18.
    Shiratori, Y., Kasai, S.: Effect of size reduction on switching characteristics in GaAs-based schottky-wrap-gate quantum wire transistors. Jpn. J. Appl. Phys. 47(4), 3086–3090 (2008)CrossRefGoogle Scholar
  19. 19.
    Mimura, T.: Development of high electron mobility transistor. Jpn. J. Appl. Phys. 44(12), 8263–8268 (2005)CrossRefGoogle Scholar
  20. 20.
    Chavarkar, P., Mishra, U.: High Electron Mobility Transistors. In: Golio, M. (ed.) RF and microwave semiconductor device handbook, p. 126. CRC Press, Boca Raton, FL (2002)Google Scholar
  21. 21.
    Miura, K., Shiratori, Y., Kasai, S.: Characterization of low-frequency noise in GaAs nanowire field-effect transistors controlled by schottky wrap gate. Jpn. J. Appl. Phys. 50(6), 06GF18.1–5 (2011)Google Scholar
  22. 22.
    Muramatsu, T., Miura, K., Shiratori, Y., Yatabe, Z., Kasai, S.: Characterization of Low-frequency noise in etched GaAs nanowire field-effect transistors having SiNx gate insulator. Jpn. J. Appl. Phys. 51, 06FE18.1–5 (2012)Google Scholar
  23. 23.
    Dignle, R., Störmer, H.L., Gossard, A.C., Wiegmann, W.: Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665–667 (1978)CrossRefGoogle Scholar
  24. 24.
    Mimura, T., Hiyamizu, S., Fujii, T., Nanbu, K.: A new field-efiect transistor with selectively doped GaAs/n-AlxGa1-x, as heterojunctions. Jpn. J. Appl. Phys. 19, L255–L227 (1980)CrossRefGoogle Scholar
  25. 25.
    Inoue, S., Kuroda, R., Yin, X., Sato, M., Kasai, S.: Detection of molecular charge dynamics through current noise in a GaAs-based nanowire FET. Jpn. J. Appl. Phys. 54(4), 04DN07.1–5 (2015)Google Scholar
  26. 26.
    Vandamme, L.K.J., Hooge, F.N.: What do we certainly know about 1/f noise in MOSTs?. IEEE Trans. Electron. Devices 55(11), 3070–3085 (2008)Google Scholar
  27. 27.
    McWhorter, A.L.: 1/ƒ Noise and Germanium Surface Properties. In: Kingston, R.H. (ed.) Semiconductor Surface Physics, pp. 207–228. University of Pennsylvania Press, Philadelphia, PA (1957)Google Scholar
  28. 28.
    Kirton, M.J., Uren, M.J.: Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/ƒ) noise. Adv. Phys. 38(4), 367–468 (1989)CrossRefGoogle Scholar
  29. 29.
    Sakakibara, Y., Okutsu, S., Enokida, T., Tani, T.: Electroluminescence properties of three-layered organic light-emitting diodes with a layer of tetraphenylchlorin or tetraphenylporphine. Jpn. J. Appl. Phys. 38, L1472–L1474 (1999)CrossRefGoogle Scholar
  30. 30.
    Janghouri, M., Mohajerani, E., Amini, M.M., Najafi, E.: Red organic light emitting device based on TPP and a new host material. Appl. Phys. A 114(2), 445–451 (2014)CrossRefGoogle Scholar
  31. 31.
    Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K., Grätzel, M.: Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014)CrossRefGoogle Scholar
  32. 32.
    Karthikeyan, S., Lee, J.Y.: Zinc-porphyrin based dyes for dye-sensitized solar cells. J. Phys. Chem. A 117(42), 10973–10979 (2013)CrossRefGoogle Scholar
  33. 33.
    Lovcinsky, M., Borecky, J., Kubat, P., Jezek, P.: Meso-tetraphenylporphyrin in liposomes as a suitable photosenzitizer for photodynamic therapy of tumors. Gen. Physiol. Biophys. 18(2), 107–118 (1999)Google Scholar
  34. 34.
    Winkelmann, C.B., Ionica, I., Chevalier, X., Royal, G., Bucher, C., Bouchiat, V.: Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Lett. 7(6), 1454–1458 (2007)CrossRefGoogle Scholar
  35. 35.
    Choi, S.J., Lee, Y.C., Seol, M.L., Ahn, J.H., Kim, S., Moon, D.I., Han, J.W., Mann, S., Yang, J.W., Choi, Y.K.: Bio-Inspired complementary photoconductor by porphyrin-coated silicon nanowires. Adv. Mater. 23(34), 3979–3983 (2011)CrossRefGoogle Scholar
  36. 36.
    Sze, S.M.: Physics of Semiconductor Devices, 3rd edn. Wiley, New York (2006)CrossRefGoogle Scholar
  37. 37.
    Sato, M., Yin, X., Kuroda, R., Kasai, S.: Detection of discrete surface charge dynamics in GaAs-based nanowire through metal-tip-induced current fluctuation. Jpn. J. Appl. Phys. 55, 02BD01.1–5 (2016)Google Scholar
  38. 38.
    Clément, N., Nishiguchi, K., Fujiwara, A., Vuillaume, D.: One-by-one trap activation in silicon nanowire transistors. Nat. Commun. 1, 92.1-8 (2010)Google Scholar
  39. 39.
    Guo, L., Leobandung, E., Chou, S.Y.: A silicon single-electron transistor memory operating at room temperature. Science 275, 649–651 (1997)CrossRefGoogle Scholar
  40. 40.
    Setiadi, A., Fujii, H., Akai, M., Kasai, S., Kanai, Y., Matsumoto, K., Kuwahara, Y.: Molecular characterization using current noise measurement of carbon nanotubes device. In: Paper presented at International Chemical Congress of Pacific Basin Societies 2015, Honolulu, Hawaii, USA, 15–20 Dec 2015Google Scholar
  41. 41.
    Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–288 (1998)CrossRefGoogle Scholar
  42. 42.
    Dykman, M.I., McClintock, P.: What can stochastic resonance do?. Nature 391(6665), 344 (1998)CrossRefGoogle Scholar
  43. 43.
    Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34(1), 10–16 (1982)CrossRefGoogle Scholar
  44. 44.
    Moss, F., Moss, F., Ward, L.M., Sannita, W.G.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115(2), 267–281 (2004)CrossRefGoogle Scholar
  45. 45.
    Kish, L.B., Harmer, G.P., Abbott, D.: Information transfer rate of neurons: stochastic resonance of Shannon’s information channel capacity. Fluct. Noise Lett. 1(1), L13–L19 (2001)CrossRefGoogle Scholar
  46. 46.
    Douglass, J.K., Wilkens, L., Pantazelous, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365(6444), 337–340 (1993)CrossRefGoogle Scholar
  47. 47.
    Hirano, Y., Segawa, Y., Kuroda-Sowa, T., Kawai, T., Matsumoto, T.: Conductance with stochastic resonance in Mn12 redox network without tuning. Appl. Phys. Lett. 104(23), 233104.1–4 (2014)Google Scholar
  48. 48.
    Hayashi, K., de Lorenzo, S., Manosas, M., Huguet, J.M., Ritort, F.: Single-molecule stochastic resonance. Phys. Rev. X 2(3), 031012.1–11 (2012)Google Scholar
  49. 49.
    Kasai, S., Asai, T.: Stochastic resonance in Schottky wrap gate-controlled GaAs nanowire field effect transistors and their networks. Appl. Phys. Express 1, 083001.1–3 (2008)Google Scholar
  50. 50.
    Kasai, S., Shiratori, Y., Miura, K., Nakano, Y., Muramatsu, T.: Control of stochastic resonance response in a GaAs-based nanowire field-effect transistor. Physica Status Solidi c 8(2), 384–386 (2011)Google Scholar
  51. 51.
    Kasai, S., Miura, K., Shiratori, Y.: Threshold-variation-enhanced adaptability of response in a nanowire field-effect transistor network. Appl. Phys. Lett. 96(19), 194102.1–3 (2010)Google Scholar
  52. 52.
    Kasai, S., Tadokoro, Y., Ichiki, A.: Design and characterization of nonlinear functions for the transmission of a small signal with non-Gaussian noise. Phys. Rev. E 88(6), 062127.1–6 (2013)Google Scholar
  53. 53.
    Imai, Y., Sato, M., Tanaka, T., Kasai, S., Hagiwara, Y., Ishizaki, H., Kuwabara, S., Arakawa. T.: Detection of weak biological signal utilizing stochastic resonance in a GaAs-based nanowire FET and its parallel summing network. Jpn. J. Appl. Phys. 53, 06JE01.1–6 (2014)Google Scholar
  54. 54.
    Shirata, K., Inden, Y., Kasai, S., Oya, T., Hagiwara, Y., Kaeriyama, S., Nakamura, H.: Jpn. J. Appl. Phys. 55, 04EM07.1–5 (2016)Google Scholar
  55. 55.
    Tadokoro, Y., Kasai, S., Ichiki, A., Tanaka, H.: Design framework of image sensor system based on dynamic range extension by adding noise for saturated conditions. IEEE Syst. Man Cybern. 48, 1121–1128 (2016)Google Scholar
  56. 56.
    Tadokoro, Y., Kasai, S., Ichiki, A.: Concept, analysis, and demonstration of a novel delay network exhibiting stochastic resonance induced by external noise. Digit. Signal Proc. 37, 1–12 (2015)Google Scholar
  57. 57.
    Collins, J.J., Chow, C.C., Imhoff, T.T.: Stochastic resonance without tuning. Nature 376(6537), 236–238 (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Seiya Kasai
    • 1
    Email author
  • Shinya Inoue
    • 1
  • Syoma Okamoto
    • 1
  • Kentaro Sasaki
    • 1
  • Xiang Yin
    • 1
  • Ryota Kuroda
    • 1
  • Masaki Sato
    • 1
  • Ryo Wakamiya
    • 1
  • Kenta Saito
    • 1
  1. 1.Research Center for Integrated Quantum Electronics and Graduate School of Information Science & TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations