Information, Noise, and Energy Dissipation: Laws, Limits, and Applications

  • Laszlo B. KishEmail author
  • Claes-Göran Granqvist
  • Sunil P. Khatri
  • Gunnar A. Niklasson
  • Ferdinand Peper
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


This chapter addresses various subjects, including some open questions related to energy dissipation, information, and noise, that are relevant for nano- and molecular electronics. The object is to give a brief and coherent presentation of the results of a number of recent studies of ours.


  1. 1.
    Kish, L.B.: End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 305, 144–149 (2002)CrossRefGoogle Scholar
  2. 2.
    Kim, J., Kish, L.B.: Can single electron logic microprocessors work at room temperature? Phys. Lett. A 323, 16–21 (2004)CrossRefGoogle Scholar
  3. 3.
    Kish, L.B.: Moore’s Law and the energy requirement of computing versus performance. IEE Proc.—Circuits Devices Syst. 151, 190–194 (2004)Google Scholar
  4. 4.
    Li, Y., Kish, L.B.: Heat, speed and error limits of Moore’s law at the nano scales. Fluct. Noise Lett. 6, L127–L131 (2006)CrossRefGoogle Scholar
  5. 5.
    Gea-Banacloche, J., Kish, L.B.: Comparison of energy requirements for classical and quantum information processing. Fluct. Noise Lett. 3, C3–C6 (2003)CrossRefGoogle Scholar
  6. 6.
    Gea-Banacloche, J., Kish, L.B.: Future directions in electronic computing and information processing. Proc. IEEE 93, 1858–1863 (2005)CrossRefGoogle Scholar
  7. 7.
    Kish, L.B., Granqvist, C.G., Khatri, S.P., Smulko, J.: Critical Remarks on Landauer’s theorem of erasure-dissipation and the related issues of the molecular engines: Maxwell-demon and Szilard-engine. In: 23rd International Conference on Noise and Fluctuations (ICNF 2015), Xian, China, 2–5 June 2015. DOI: 10.1109/ICNF.2015.7288632
  8. 8.
    Kish, L.B., Granqvist, C.G., Khatri, S., Wen, H.: Demons: Maxwell demon Szilard engine and Landauer’s erasure-dissipation. Int. J. Mod. Phys. Conf. Ser. 33, 1460364 (2014)CrossRefGoogle Scholar
  9. 9.
    Kish, L.B., Granqvist, C.G.: Electrical Maxwell Demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PLoS ONE 7, e46800 (2012)CrossRefGoogle Scholar
  10. 10.
    Kish, L.B., Granqvist, C.G.: Energy requirement of control. EPL 98, 68001 (2012)CrossRefGoogle Scholar
  11. 11.
    Kish, L.B., Granqvist, C.G., Khatri, S.P., Pepper, F.: Zero and negative energy dissipation at information-theoretic erasure. J. Comput. Electron. 15, 335–339 (2015)CrossRefGoogle Scholar
  12. 12.
    Kish, L.B., Granqvist, C.G., Khatri, S.P., Peper, F.: Response to Comment on ‘Zero and negative energy dissipation at information-theoretic erasure’. J. Comput. Electron. 15, 343–346 (2015)CrossRefGoogle Scholar
  13. 13.
    Kish, L.B., Niklasson, G.A., Granqvist, C.G.: Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal. J. Stat. Mech. 2016, 054006 (2016)Google Scholar
  14. 14.
    Kish, L.B., Niklasson, G.A., Granqvist, C.G.: Zero thermal noise in resistors at zero temperature. Fluct. Noise. Lett. 15, 1640001 (2016)Google Scholar
  15. 15.
    Szilard, L.: On the reduction of entropy in a thermodynamic system by the interference of an intelligent being. Z. Phys. 53, 840–856 (1929)CrossRefGoogle Scholar
  16. 16.
    Brillouin, L.: The negentropy principle of information. J. Appl. Phys. 24, 1152–1163 (1953)CrossRefGoogle Scholar
  17. 17.
    Brillouin, L.: Science and Information Theory. Academic, New York (1962)Google Scholar
  18. 18.
    Alicki, R.: Stability versus reversibility in information processing. Int. J. Mod. Phys. Conf. Ser. 33, 1460353 (2014)CrossRefGoogle Scholar
  19. 19.
    von Neumann, J.: The computer and the brain. Berlinische Verlagsanstalt KG, Berlin, Germany (2012)Google Scholar
  20. 20.
    Anderson, N.G.: Information erasure in quantum systems. Phys. Lett. A 372, 5552–5555 (2008)CrossRefGoogle Scholar
  21. 21.
    Bennett, C.H.: Demons, engines and the second law. Sci. Am. 257, 108–116 (1987)CrossRefGoogle Scholar
  22. 22.
    Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)CrossRefGoogle Scholar
  23. 23.
    Renyi, A.: Diary on Information Theory. Wiley, New York (1987)Google Scholar
  24. 24.
    Porod, W., Grondin, R.O., Ferry, D.K.: Dissipation in computation. Phys. Rev. Lett. 52, 232–235 (1984)CrossRefGoogle Scholar
  25. 25.
    Porod, W., Grondin, R.O., Ferry, D.K., Porod, G.: Dissipation in computation—reply. Phys. Rev. Lett. 52, 1206–1206 (1984)Google Scholar
  26. 26.
    Porod, W.: Energy requirements in communication—comment. Appl. Phys. Lett. 52, 2191–2191 (1988)Google Scholar
  27. 27.
    Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 36, 375–411 (2005)CrossRefGoogle Scholar
  28. 28.
    Norton, J.D.: All shook up: fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy 15, 4432–4483 (2013)CrossRefGoogle Scholar
  29. 29.
    Gyftopoulos, E.P., von Spakovsky, M.R.: Comments on the breakdown of the Landauer bound for information erasure in the quantum regime. (2007)
  30. 30.
    Johnson, J.B.: Thermal agitation of electricity in conductors. Nature 119, 50 (1927)CrossRefGoogle Scholar
  31. 31.
    Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 29, 614 (1927)Google Scholar
  32. 32.
    Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)CrossRefGoogle Scholar
  33. 33.
    Landau, L., Lifshitz, E.: Statistical Physics. Addison Wesley, Reading (1974)Google Scholar
  34. 34.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)CrossRefGoogle Scholar
  35. 35.
    Ginzburg, V.L., Pitaevskii, L.P.: Quantum Nyquist formula and the applicability ranges of the Callen-Welton formula. Sov. Phys. Usp. 30, 168 (1987)CrossRefGoogle Scholar
  36. 36.
    Zagoskin, A.M.: Quantum Engineering. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  37. 37.
    Devoret, M.H.: Quantum fluctuations in electrical circuits. In: Reynaud, S., Giacobino, E., Zinn-Justin, J. (eds.) Fluctuations Quantique: Les Houches, Session LXIII, 1995. Elsevier, Amsterdam (1997)Google Scholar
  38. 38.
    Kiss, L.B., Kertesz, J., Hajdu, J.: Conductance noise spectrum of mesoscopic systems. Z. Phys. B 81, 299 (1990)CrossRefGoogle Scholar
  39. 39.
    Kleen, W.: Thermal radiation, thermal noise and zero-point energy. Solid-State Electron. 30, 1303 (1987)CrossRefGoogle Scholar
  40. 40.
    Kish, L.B.: Thermal noise engines. Chaos, Solitons Fractals 44, 114 (2011)CrossRefGoogle Scholar
  41. 41.
    Bressi, G., Carugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)CrossRefGoogle Scholar
  42. 42.
    Koch, H., van Harlingen, D.J., Clarke, J.: Observation of zero-point fluctuations in a resistively shunted Josephson tunnel junction. Phys. Rev. Lett. 47, 1216 (1981)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laszlo B. Kish
    • 1
    Email author
  • Claes-Göran Granqvist
    • 2
  • Sunil P. Khatri
    • 1
  • Gunnar A. Niklasson
    • 2
  • Ferdinand Peper
    • 3
  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.The Ångström Laboratory, Department of Engineering SciencesUppsala UniversityUppsalaSweden
  3. 3.CiNet, NICT, Osaka UniversitySuita, OsakaJapan

Personalised recommendations