Skip to main content

Surface Synthesis of Molecular Wire Architectures

  • Conference paper
  • First Online:
  • 867 Accesses

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

The synthesis of a molecular wire assembly is a key technology to construct molecular architectures toward single-molecular organic electronic devices. Two new methods to fabricate highly organized and assembled molecular wires are described: 1. one-dimensionally assembled polythiophene molecular wires by electrochemical epitaxial polymerization; 2. multilayered graphene nanoribbon assemblies by two-zone chemical vapor deposition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parodi, M., Bianco, B., Chiabrera, A.: Toward molecular electronics. Self-screening of molecular wires. Cell Biophys. 7(3), 215–235 (1985). doi:10.1007/BF02790467

    Article  CAS  Google Scholar 

  2. Barth, J.V.: Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58(1), 375–407 (2007). doi:10.1146/annurev.physchem.56.092503.141259

  3. El Garah, M., MacLeod, J.M., Rosei, F.: Covalently bonded networks through surface-confined polymerization. Surf. Sci. 613, 6–14 (2013). doi:10.1016/j.susc.2013.03.015

    Article  Google Scholar 

  4. Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999). doi:10.1038/44359

  5. Dimitrakopoulos, C.D., Mascaro, D.J.: Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45(1), 11–27 (2001).

    Google Scholar 

  6. Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Brédas, J.L., Lögdlund, M., Salaneck, R.: Conjugated polymer electroluminescence. Nature 397(6715), 121–128 (1999). doi:10.1038/16393

  7. Gross, M., Müller, D.C., Nothofer, H.-G., Scherf, U., Neher, D., Bräuchle, C., Meerholz, K.: Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 405(6787), 661–665 (2000). doi:10.1038/35015037

    Article  CAS  Google Scholar 

  8. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995). doi:10.1126/science.270.5243-1789

  9. Granström, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R., Friend, R.H.: Laminated fabrication of polymeric photovoltaic diodes. Nature 395(6699), 257–260 (1998). doi:10.1038/26183

  10. Sakaguchi, H., Matsumura, H., Gong, H.: Electrochemical epitaxial polymerization of single-molecular wires. Nat. Mater. 3(8), 551–557 (2004). doi:10.1038/nmat1176

    Article  CAS  Google Scholar 

  11. Okawa, Y., Aono, M.: Nanoscale control of chain polymerization. Nature 409(6821), 683–684 (2001). doi:10.1038/35055625

    Article  CAS  Google Scholar 

  12. Okawa, Y., Aono, M.: Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys. 115(5), 2317–2322 (2001). doi:10.1063/1.1384554

    Article  CAS  Google Scholar 

  13. Sakaguchi, H., Matsumura, H., Gong, H., Abouelwafa, A.M.: Direct visualization of the formation of single-molecule conjugated copolymers. Science 310(5750), 1002–1006 (2005). doi:10.1126/science.1117990

    Article  CAS  Google Scholar 

  14. Chen, L., Hernandez, Y., Feng, X., Müllen, K.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51(31), 7640–7654 (2012). doi:10.1002/anie.201201084

    Article  CAS  Google Scholar 

  15. Geim, A.K.: Nobel lecture: random walk to graphene. Rev. Mod. Phys. 83(3), 851–862 (2011). doi:10.1103/RevModPhys.83.851

  16. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009). doi:10.1038/nature07919

    Article  CAS  Google Scholar 

  17. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). doi:10.1038/nature07872

    Article  CAS  Google Scholar 

  18. Wang, X., Dai, H.: Etching and narrowing of graphene from the edges. Nat. Chem. 2(8), 661–665 (2010). doi:10.1038/nchem.719

    Article  CAS  Google Scholar 

  19. Kato, T., Hatakeyama, R.: Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat. Nanotech. 7(10), 651–656 (2012). doi:10.1038/nnano.2012.145

    Article  CAS  Google Scholar 

  20. Sakaguchi, H., Kawagoe, Y., Hirano, Y., Iruka, T., Yano, M., Nakae, T.: Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26(24), 4134–4138 (2014). doi:10.1002/adma.201305034

    Article  CAS  Google Scholar 

  21. Tao, N.J., Lindsay, S.M.: In situ scanning tunneling microscopy study of iodine and bromine adsorption on gold (111) under potential control. J. Phys. Chem. 96(13), 5213–5217 (1992). doi:10.1021/j100192a006

  22. Yamada, T., Batina, N., Itaya, K.: Structure of electrochemically deposited iodine adlayer on Au (111) studied by ultrahigh-vacuum instrumentation and in situ STM. J. Phys. Chem. 99(21), 8817–8823 (1995). doi:10.1021/j100021a057

    Article  CAS  Google Scholar 

  23. Furukawa, Y.: Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J. Phys. Chem. 100(39), 15644–15653 (1996). doi:10.1021/jp960608n

    Article  CAS  Google Scholar 

  24. Bakhshi, A., Deepika: Molecular designing of copolymers of donor–acceptor polymers based on polythiophene. J. Mol. Struct. THEOCHEM 499(1), 105–110 (2000). doi:10.1016/S0166-1280(99)00275-4

  25. Iyoda, T., Toyoda, H., Fujitsuka, M., Nakahara, R., Tsuchiya, H., Honda, K., Shimidzu, T.: The 100-Å-order depth profile control of polypyrrole-poly (3-methylthiophene) composite thin film by potential-programmed electropolymerization. J. Phys. Chem. 95(13), 5215–5220 (1991). doi:10.1021/j100166a055

  26. Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., Bradley, D.D.C.: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77(3), 406–408 (2000). doi:10.1063/1.126991

  27. Brun, M., Demadrille, R., Rannou, P., Pron, A., Travers, J.-P., Grévin, B.: Multiscale scanning tunneling microscopy study of self-assembly phenomena in two-dimensional polycrystals of π-conjugated polymers: the case of regioregular poly (dioctylbithiophene-alt-fluorenone). Adv. Mater. 16(23–24), 2087–2092 (2004). doi:10.1002/adma.200400088

  28. Ng, M.-K., Yu, L.: Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew. Chem. Int. Ed. 41(19), 3598–3601 (2002). doi:10.1002/1521-3773(20021004)41:19<3598:AID-ANIE3598>3.0.CO;2-U

    Article  CAS  Google Scholar 

  29. Ng, M.-K., Lee, D.-C., Yu, L.: Molecular diodes based on conjugated diblock co-oligomers. J. Am. Chem. Soc. 124(40), 11862–11863 (2002). doi:10.1021/ja026808w

  30. Leclerc, M., Daoust, G.: Design of new conducting 3,4-disubstituted polythiophenes. J. Chem. Soc., Chem. Commun. (3), 273–274 (1990). doi:10.1039/c39900000273

  31. Daoust, G., Leclerc, M.: Structure-property relationships in alkoxy-substituted polythiophenes. Macromolecules 24(2), 455–459 (1991). doi:10.1021/ma00002a018

    Article  CAS  Google Scholar 

  32. Johansson, T., Mammo, W., Svensson, M., Andersson, M.R., Inganäs, O.: Electrochemical bandgaps of substituted polythiophenes. J. Mater. Chem. 13(6), 1316–1323 (2003). doi:10.1039/b301403g

    Article  CAS  Google Scholar 

  33. Leclerc, M.: Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater. 11(18), 1491–1498 (1999). doi:10.1002/(Sici)1521-4095(199912)11:18<1491:Aid-Adma1491>3.0.Co;2-O

    Article  CAS  Google Scholar 

  34. Roux, C., Leclerc, M.: Rod-to-coil transition in alkoxy-substituted polythiophenes. Macromolecules 25(8), 2141–2144 (1992). doi:10.1021/ma00034a012

    Article  CAS  Google Scholar 

  35. Gigli, G., Lomascolo, M., Cingolani, R., Barbarella, G., Zambianchi, M., Antolini, L., Della Sala, F., Di Carlo, A., Lugli, P.: Relationship between optical and structural properties in substituted quaterthiophene crystals. Appl. Phys. Lett. 73(17), 2414–2416 (1998). doi:10.1063/1.122451

    Article  CAS  Google Scholar 

  36. Mena-Osteritz, E., Meyer, A., Langeveld-Voss, B.M.W., Janssen, R.A.J., Meijer, E.W., Bäuerle, P.: Two-dimensional crystals of poly (3-alkylthiophene)s: direct visualization of chain conformations of polymer folds in highly ordered 2D-latices of poly (3-alkylthiophenes). Angew. Chem. Int. Ed. 39(15), 2679–2684 (2000). doi:10.1002/1521-3773(20000804)39:15<2679::AID-ANIE2679>3.0.CO;2-2

  37. Grévin, B., Rannou, P., Payerne, R., Pron, A., Travers, J.-P.: Scanning tunneling microscopy investigations of self-organized poly (3-hexylthiophene) two-dimensional polycrystals. Adv. Mater. 15(11), 881–884 (2003). doi:10.1002/adma.200304580

  38. Grévin, B., Rannou, P., Payerne, R., Pron, A., Travers, J.-P.: Multi-scale scanning tunneling microscopy imaging of self-organized regioregular poly (3-hexylthiophene) films. J. Chem. Phys. 118(15), 7097–7102 (2003). doi:10.1063/1.1561435

  39. Barbarella, G., Zambianchi, M., Bongini, A., Antolini, L.: Crystal structure of 4,4′,3″,4″′-tetramethyl2,2′:5′,2″:5″,2″′-tetrathiophene: a comparison with the conformation in solution. Adv. Mater. 4(4), 282–285 (1992). doi:10.1002/adma.19920040408

  40. Grobis, M., Wachowiak, A., Yamachika, R., Crommie, M.F.: Tuning negative differential resistance in a molecular film. Appl. Phys. Lett. 86(20), 204102 (2005). doi:10.1063/1.1931822

  41. Akai-Kasaya, M., Shimizu, K., Watanabe, Y., Saito, A., Aono, M., Kuwahara, Y.: Electronic structure of a polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite. Phys. Rev. Lett. 91(25), 255501 (2003). doi:10.1103/PhysRevLett.91.255501

    Article  CAS  Google Scholar 

  42. Schwierz, F.: Graphene transistors. Nat. Nanotech. 5(7), 487–496 (2010). doi:10.1038/nnano.2010.89

  43. Schwab, M.G., Narita, A., Hernandez, Y., Balandina, T., Mali, K.S., De Feyter, S., Feng, X., Müllen, K.: Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134(44), 18169–18172 (2012). doi:10.1021/ja307697j

    Article  CAS  Google Scholar 

  44. Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M.C., Chamberlain, T.W., Rance, G.A., Kuganathan, N., Biskupek, J., Kaiser, U., Khlobystov, A.N.: Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10(9), 687–692 (2011). doi:10.1038/nmat3082

  45. Talyzin, A.V., Anoshkin, I.V., Krasheninnikov, A.V., Nieminen, R.M., Nasibulin, A.G., Jiang, H., Kauppinen, E.I.: Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 11(10), 4352–4356 (2011). doi:10.1021/nl2024678

    Article  CAS  Google Scholar 

  46. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Müllen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470–473 (2010). doi:10.1038/nature09211

    Article  CAS  Google Scholar 

  47. Lafferentz, L., Eberhardt, V., Dri, C., Africh, C., Comelli, G., Esch, F., Hecht, S., Grill, L.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4(3), 215–220 (2012). doi:10.1038/nchem.1242

    Article  CAS  Google Scholar 

  48. Bronner, C., Stremlau, S., Gille, M., Brauße, F., Haase, A., Hecht, S., Tegeder, P.: Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52(16), 4422–4425 (2013). doi:10.1002/anie.201209735

    Article  CAS  Google Scholar 

  49. Zhu, X., Su, H.: Scaling of excitons in graphene nanoribbons with armchair shaped edges. J. Phys. Chem. A 115(43), 11998–12003 (2011). doi:10.1021/jp202787h

    Article  CAS  Google Scholar 

  50. Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135(15), 5768–5775 (2013). doi:10.1021/ja400304b

    Article  Google Scholar 

  51. Simonov, K.A., Vinogradov, N.A., Vinogradov, A.S., Generalov, A.V., Zagrebina, E.M., Mårtensson, N., Cafolla, A.A., Carpy, T., Cunniffe, J.P., Preobrajenski, A.B.: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: combined core-level spectroscopy and STM study. J. Phys. Chem. C 118(23), 12532–12540 (2014). doi:10.1021/jp502215m

    Article  CAS  Google Scholar 

  52. Batra, A., Cvetko, D., Kladnik, G., Adak, O., Cardoso, C., Ferretti, A., Prezzi, D., Molinari, E., Morgante, A., Venkataraman, L.: Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chem. Sci. 5(11), 4419–4423 (2014). doi:10.1039/c4sc01584c

  53. Gille, M., Viertel, A., Weidner, S., Hecht, S.: Modular synthesis of monomers for on-surface polymerization to graphene architectures. Synlett 24(2), 259–263 (2013). doi:10.1055/s-0032-1317959

    Article  CAS  Google Scholar 

  54. Bennett, P.B., Pedramrazi, Z., Madani, A., Chen, Y.-C., de Oteyza, D.G., Chen, C., Fischer, F.R., Crommie, M.F., Bokor, J.: Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103(25), 253114 (2013). doi:10.1063/1.4855116

  55. Tanaka, K., Yamashita, S., Yamabe, H., Yamabe, T.: Electronic properties of one-dimensional graphite family. Synth. Met. 17(1–3), 143–148 (1987). doi:10.1016/0379-6779(87)90729-6

  56. Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). doi:10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  57. Barone, V., Hod, O., Scuseria, G.E.: Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006). doi:10.1021/nl0617033

    Article  CAS  Google Scholar 

  58. Huang, H., Wei, D., Sun, J., Wong, S.L., Feng, Y.P., Castro Neto, A.H., Wee, A.T.S.: Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012). doi:10.1038/srep00983

  59. Dienel, T., Kawai, S., Söde, H., Feng, X., Müllen, K., Ruffieux, P., Fasel, R., Gröning, O.: Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15(8), 5185–5190 (2015). doi:10.1021/acs.nanolett.5b01403

    Article  CAS  Google Scholar 

  60. Sakaguchi, H., Song, S., Kojima, T., Nakae, T.: Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9(1), 57–63 (2017). doi:10.1038/nchem.2614

  61. Sakamoto, J., van Heijst, J., Lukin, O., Schlüter, A.D.: Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48(6), 1030–1069 (2009). doi:10.1002/anie.200801863

Download references

Acknowledgements

This work is supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (16H00967, 26110513) from the Japanese Ministry of Education, Culture, Sports, Sciences and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Nakae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nakae, T., Sakaguchi, H. (2017). Surface Synthesis of Molecular Wire Architectures. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_19

Download citation

Publish with us

Policies and ethics