Advertisement

Surface Synthesis of Molecular Wire Architectures

  • Takahiro NakaeEmail author
  • Hiroshi Sakaguchi
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The synthesis of a molecular wire assembly is a key technology to construct molecular architectures toward single-molecular organic electronic devices. Two new methods to fabricate highly organized and assembled molecular wires are described: 1. one-dimensionally assembled polythiophene molecular wires by electrochemical epitaxial polymerization; 2. multilayered graphene nanoribbon assemblies by two-zone chemical vapor deposition.

Notes

Acknowledgements

This work is supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (16H00967, 26110513) from the Japanese Ministry of Education, Culture, Sports, Sciences and Technology.

References

  1. 1.
    Parodi, M., Bianco, B., Chiabrera, A.: Toward molecular electronics. Self-screening of molecular wires. Cell Biophys. 7(3), 215–235 (1985). doi: 10.1007/BF02790467 CrossRefGoogle Scholar
  2. 2.
    Barth, J.V.: Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58(1), 375–407 (2007). doi: 10.1146/annurev.physchem.56.092503.141259
  3. 3.
    El Garah, M., MacLeod, J.M., Rosei, F.: Covalently bonded networks through surface-confined polymerization. Surf. Sci. 613, 6–14 (2013). doi: 10.1016/j.susc.2013.03.015 CrossRefGoogle Scholar
  4. 4.
    Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999). doi: 10.1038/44359
  5. 5.
    Dimitrakopoulos, C.D., Mascaro, D.J.: Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45(1), 11–27 (2001).Google Scholar
  6. 6.
    Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Brédas, J.L., Lögdlund, M., Salaneck, R.: Conjugated polymer electroluminescence. Nature 397(6715), 121–128 (1999). doi: 10.1038/16393
  7. 7.
    Gross, M., Müller, D.C., Nothofer, H.-G., Scherf, U., Neher, D., Bräuchle, C., Meerholz, K.: Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 405(6787), 661–665 (2000). doi: 10.1038/35015037 CrossRefGoogle Scholar
  8. 8.
    Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995). doi: 10.1126/science.270.5243-1789
  9. 9.
    Granström, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R., Friend, R.H.: Laminated fabrication of polymeric photovoltaic diodes. Nature 395(6699), 257–260 (1998). doi: 10.1038/26183
  10. 10.
    Sakaguchi, H., Matsumura, H., Gong, H.: Electrochemical epitaxial polymerization of single-molecular wires. Nat. Mater. 3(8), 551–557 (2004). doi: 10.1038/nmat1176 CrossRefGoogle Scholar
  11. 11.
    Okawa, Y., Aono, M.: Nanoscale control of chain polymerization. Nature 409(6821), 683–684 (2001). doi: 10.1038/35055625 CrossRefGoogle Scholar
  12. 12.
    Okawa, Y., Aono, M.: Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys. 115(5), 2317–2322 (2001). doi: 10.1063/1.1384554 CrossRefGoogle Scholar
  13. 13.
    Sakaguchi, H., Matsumura, H., Gong, H., Abouelwafa, A.M.: Direct visualization of the formation of single-molecule conjugated copolymers. Science 310(5750), 1002–1006 (2005). doi: 10.1126/science.1117990 CrossRefGoogle Scholar
  14. 14.
    Chen, L., Hernandez, Y., Feng, X., Müllen, K.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51(31), 7640–7654 (2012). doi: 10.1002/anie.201201084 CrossRefGoogle Scholar
  15. 15.
    Geim, A.K.: Nobel lecture: random walk to graphene. Rev. Mod. Phys. 83(3), 851–862 (2011). doi: 10.1103/RevModPhys.83.851
  16. 16.
    Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009). doi: 10.1038/nature07919 CrossRefGoogle Scholar
  17. 17.
    Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). doi: 10.1038/nature07872 CrossRefGoogle Scholar
  18. 18.
    Wang, X., Dai, H.: Etching and narrowing of graphene from the edges. Nat. Chem. 2(8), 661–665 (2010). doi: 10.1038/nchem.719 CrossRefGoogle Scholar
  19. 19.
    Kato, T., Hatakeyama, R.: Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat. Nanotech. 7(10), 651–656 (2012). doi: 10.1038/nnano.2012.145 CrossRefGoogle Scholar
  20. 20.
    Sakaguchi, H., Kawagoe, Y., Hirano, Y., Iruka, T., Yano, M., Nakae, T.: Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26(24), 4134–4138 (2014). doi: 10.1002/adma.201305034 CrossRefGoogle Scholar
  21. 21.
    Tao, N.J., Lindsay, S.M.: In situ scanning tunneling microscopy study of iodine and bromine adsorption on gold (111) under potential control. J. Phys. Chem. 96(13), 5213–5217 (1992). doi: 10.1021/j100192a006
  22. 22.
    Yamada, T., Batina, N., Itaya, K.: Structure of electrochemically deposited iodine adlayer on Au (111) studied by ultrahigh-vacuum instrumentation and in situ STM. J. Phys. Chem. 99(21), 8817–8823 (1995). doi: 10.1021/j100021a057 CrossRefGoogle Scholar
  23. 23.
    Furukawa, Y.: Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J. Phys. Chem. 100(39), 15644–15653 (1996). doi: 10.1021/jp960608n CrossRefGoogle Scholar
  24. 24.
    Bakhshi, A., Deepika: Molecular designing of copolymers of donor–acceptor polymers based on polythiophene. J. Mol. Struct. THEOCHEM 499(1), 105–110 (2000). doi: 10.1016/S0166-1280(99)00275-4
  25. 25.
    Iyoda, T., Toyoda, H., Fujitsuka, M., Nakahara, R., Tsuchiya, H., Honda, K., Shimidzu, T.: The 100-Å-order depth profile control of polypyrrole-poly (3-methylthiophene) composite thin film by potential-programmed electropolymerization. J. Phys. Chem. 95(13), 5215–5220 (1991). doi: 10.1021/j100166a055
  26. 26.
    Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., Bradley, D.D.C.: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77(3), 406–408 (2000). doi: 10.1063/1.126991
  27. 27.
    Brun, M., Demadrille, R., Rannou, P., Pron, A., Travers, J.-P., Grévin, B.: Multiscale scanning tunneling microscopy study of self-assembly phenomena in two-dimensional polycrystals of π-conjugated polymers: the case of regioregular poly (dioctylbithiophene-alt-fluorenone). Adv. Mater. 16(23–24), 2087–2092 (2004). doi: 10.1002/adma.200400088
  28. 28.
    Ng, M.-K., Yu, L.: Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew. Chem. Int. Ed. 41(19), 3598–3601 (2002). doi: 10.1002/1521-3773(20021004)41:19<3598:AID-ANIE3598>3.0.CO;2-U CrossRefGoogle Scholar
  29. 29.
    Ng, M.-K., Lee, D.-C., Yu, L.: Molecular diodes based on conjugated diblock co-oligomers. J. Am. Chem. Soc. 124(40), 11862–11863 (2002). doi: 10.1021/ja026808w
  30. 30.
    Leclerc, M., Daoust, G.: Design of new conducting 3,4-disubstituted polythiophenes. J. Chem. Soc., Chem. Commun. (3), 273–274 (1990). doi: 10.1039/c39900000273
  31. 31.
    Daoust, G., Leclerc, M.: Structure-property relationships in alkoxy-substituted polythiophenes. Macromolecules 24(2), 455–459 (1991). doi: 10.1021/ma00002a018 CrossRefGoogle Scholar
  32. 32.
    Johansson, T., Mammo, W., Svensson, M., Andersson, M.R., Inganäs, O.: Electrochemical bandgaps of substituted polythiophenes. J. Mater. Chem. 13(6), 1316–1323 (2003). doi: 10.1039/b301403g CrossRefGoogle Scholar
  33. 33.
    Leclerc, M.: Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater. 11(18), 1491–1498 (1999). doi: 10.1002/(Sici)1521-4095(199912)11:18<1491:Aid-Adma1491>3.0.Co;2-O CrossRefGoogle Scholar
  34. 34.
    Roux, C., Leclerc, M.: Rod-to-coil transition in alkoxy-substituted polythiophenes. Macromolecules 25(8), 2141–2144 (1992). doi: 10.1021/ma00034a012 CrossRefGoogle Scholar
  35. 35.
    Gigli, G., Lomascolo, M., Cingolani, R., Barbarella, G., Zambianchi, M., Antolini, L., Della Sala, F., Di Carlo, A., Lugli, P.: Relationship between optical and structural properties in substituted quaterthiophene crystals. Appl. Phys. Lett. 73(17), 2414–2416 (1998). doi: 10.1063/1.122451 CrossRefGoogle Scholar
  36. 36.
    Mena-Osteritz, E., Meyer, A., Langeveld-Voss, B.M.W., Janssen, R.A.J., Meijer, E.W., Bäuerle, P.: Two-dimensional crystals of poly (3-alkylthiophene)s: direct visualization of chain conformations of polymer folds in highly ordered 2D-latices of poly (3-alkylthiophenes). Angew. Chem. Int. Ed. 39(15), 2679–2684 (2000). doi: 10.1002/1521-3773(20000804)39:15<2679::AID-ANIE2679>3.0.CO;2-2
  37. 37.
    Grévin, B., Rannou, P., Payerne, R., Pron, A., Travers, J.-P.: Scanning tunneling microscopy investigations of self-organized poly (3-hexylthiophene) two-dimensional polycrystals. Adv. Mater. 15(11), 881–884 (2003). doi: 10.1002/adma.200304580
  38. 38.
    Grévin, B., Rannou, P., Payerne, R., Pron, A., Travers, J.-P.: Multi-scale scanning tunneling microscopy imaging of self-organized regioregular poly (3-hexylthiophene) films. J. Chem. Phys. 118(15), 7097–7102 (2003). doi: 10.1063/1.1561435
  39. 39.
    Barbarella, G., Zambianchi, M., Bongini, A., Antolini, L.: Crystal structure of 4,4′,3″,4″′-tetramethyl2,2′:5′,2″:5″,2″′-tetrathiophene: a comparison with the conformation in solution. Adv. Mater. 4(4), 282–285 (1992). doi: 10.1002/adma.19920040408
  40. 40.
    Grobis, M., Wachowiak, A., Yamachika, R., Crommie, M.F.: Tuning negative differential resistance in a molecular film. Appl. Phys. Lett. 86(20), 204102 (2005). doi: 10.1063/1.1931822
  41. 41.
    Akai-Kasaya, M., Shimizu, K., Watanabe, Y., Saito, A., Aono, M., Kuwahara, Y.: Electronic structure of a polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite. Phys. Rev. Lett. 91(25), 255501 (2003). doi: 10.1103/PhysRevLett.91.255501 CrossRefGoogle Scholar
  42. 42.
    Schwierz, F.: Graphene transistors. Nat. Nanotech. 5(7), 487–496 (2010). doi: 10.1038/nnano.2010.89
  43. 43.
    Schwab, M.G., Narita, A., Hernandez, Y., Balandina, T., Mali, K.S., De Feyter, S., Feng, X., Müllen, K.: Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134(44), 18169–18172 (2012). doi: 10.1021/ja307697j CrossRefGoogle Scholar
  44. 44.
    Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M.C., Chamberlain, T.W., Rance, G.A., Kuganathan, N., Biskupek, J., Kaiser, U., Khlobystov, A.N.: Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10(9), 687–692 (2011). doi: 10.1038/nmat3082
  45. 45.
    Talyzin, A.V., Anoshkin, I.V., Krasheninnikov, A.V., Nieminen, R.M., Nasibulin, A.G., Jiang, H., Kauppinen, E.I.: Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 11(10), 4352–4356 (2011). doi: 10.1021/nl2024678 CrossRefGoogle Scholar
  46. 46.
    Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Müllen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470–473 (2010). doi: 10.1038/nature09211 CrossRefGoogle Scholar
  47. 47.
    Lafferentz, L., Eberhardt, V., Dri, C., Africh, C., Comelli, G., Esch, F., Hecht, S., Grill, L.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4(3), 215–220 (2012). doi: 10.1038/nchem.1242 CrossRefGoogle Scholar
  48. 48.
    Bronner, C., Stremlau, S., Gille, M., Brauße, F., Haase, A., Hecht, S., Tegeder, P.: Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52(16), 4422–4425 (2013). doi: 10.1002/anie.201209735 CrossRefGoogle Scholar
  49. 49.
    Zhu, X., Su, H.: Scaling of excitons in graphene nanoribbons with armchair shaped edges. J. Phys. Chem. A 115(43), 11998–12003 (2011). doi: 10.1021/jp202787h CrossRefGoogle Scholar
  50. 50.
    Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135(15), 5768–5775 (2013). doi: 10.1021/ja400304b CrossRefGoogle Scholar
  51. 51.
    Simonov, K.A., Vinogradov, N.A., Vinogradov, A.S., Generalov, A.V., Zagrebina, E.M., Mårtensson, N., Cafolla, A.A., Carpy, T., Cunniffe, J.P., Preobrajenski, A.B.: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: combined core-level spectroscopy and STM study. J. Phys. Chem. C 118(23), 12532–12540 (2014). doi: 10.1021/jp502215m CrossRefGoogle Scholar
  52. 52.
    Batra, A., Cvetko, D., Kladnik, G., Adak, O., Cardoso, C., Ferretti, A., Prezzi, D., Molinari, E., Morgante, A., Venkataraman, L.: Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chem. Sci. 5(11), 4419–4423 (2014). doi: 10.1039/c4sc01584c
  53. 53.
    Gille, M., Viertel, A., Weidner, S., Hecht, S.: Modular synthesis of monomers for on-surface polymerization to graphene architectures. Synlett 24(2), 259–263 (2013). doi: 10.1055/s-0032-1317959 CrossRefGoogle Scholar
  54. 54.
    Bennett, P.B., Pedramrazi, Z., Madani, A., Chen, Y.-C., de Oteyza, D.G., Chen, C., Fischer, F.R., Crommie, M.F., Bokor, J.: Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103(25), 253114 (2013). doi: 10.1063/1.4855116
  55. 55.
    Tanaka, K., Yamashita, S., Yamabe, H., Yamabe, T.: Electronic properties of one-dimensional graphite family. Synth. Met. 17(1–3), 143–148 (1987). doi: 10.1016/0379-6779(87)90729-6
  56. 56.
    Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). doi: 10.1103/PhysRevLett.97.216803 CrossRefGoogle Scholar
  57. 57.
    Barone, V., Hod, O., Scuseria, G.E.: Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006). doi: 10.1021/nl0617033 CrossRefGoogle Scholar
  58. 58.
    Huang, H., Wei, D., Sun, J., Wong, S.L., Feng, Y.P., Castro Neto, A.H., Wee, A.T.S.: Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012). doi: 10.1038/srep00983
  59. 59.
    Dienel, T., Kawai, S., Söde, H., Feng, X., Müllen, K., Ruffieux, P., Fasel, R., Gröning, O.: Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15(8), 5185–5190 (2015). doi: 10.1021/acs.nanolett.5b01403 CrossRefGoogle Scholar
  60. 60.
    Sakaguchi, H., Song, S., Kojima, T., Nakae, T.: Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9(1), 57–63 (2017). doi: 10.1038/nchem.2614
  61. 61.
    Sakamoto, J., van Heijst, J., Lukin, O., Schlüter, A.D.: Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48(6), 1030–1069 (2009). doi: 10.1002/anie.200801863

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Advanced EnergyKyoto UniversityUji, KyotoJapan

Personalised recommendations