Advertisement

Synthesis of Rigid π Organic Molecular Architectures and Their Applications in Single-Molecule Measurement

  • Hidemitsu UnoEmail author
  • Takahiro Nakae
  • Tetsuo Okujima
  • Shigeki Mori
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Large polycyclic π-system compounds such as higher phenacenes, fused azulenes, and pyrrole-containing compounds such as porphyrinoids and cyclopyrroles were prepared to measure their physical and electric properties by scanning tunneling microscope.

Notes

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (25110003) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

References

  1. 1.
    Wang, A.S.I., William, J.M., Brian, M.F., Lois, M.B.Y.: A tetra-substituted chrysene: orientation of multiple electrophilic substitution and use of a tetra-substituted chrysene as a blue emitter for OLEDs. Chem. Commun. (20), 2319–2321 (2008). doi: 10.1039/B715386D
  2. 2.
    Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., Müllen, K.: Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed. 47(16), 2990–2992 (2008). doi: 10.1002/anie.200704909 CrossRefGoogle Scholar
  3. 3.
    Zhang, L., Cao, Y., Colella, N.S., Liang, Y., Brédas, J.-L., Houk, K.N., Briseno, A.L.: Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Acc. Chem. Res. 48(3), 500–509 (2015). doi: 10.1021/ar500278w CrossRefGoogle Scholar
  4. 4.
    Fu, M., Ehrat, F., Wang, Y., Milowska, K.Z., Reckmeier, C., Rogach, A.L., Stolarczyk, J.K., Urban, A.S., Feldmann, J.: Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 15(9), 6030–6035 (2015). doi: 10.1021/acs.nanolett.5b02215 CrossRefGoogle Scholar
  5. 5.
    Dichtel, W.R., Heath, J.R., Fraser Stoddart, J.: Designing bistable [2]rotaxanes for molecular electronic devices. Philos. Trans. R. Soc. A 365(1855), 1607–1625 (2007). doi: 10.1098/rsta.2007.2034 CrossRefGoogle Scholar
  6. 6.
    Zhang, Q., Peng, H., Zhang, G., Lu, Q., Chang, J., Dong, Y., Shi, X., Wei, J.: Facile bottom-up synthesis of coronene-based 3-fold symmetrical and highly substituted nanographenes from simple aromatics. J. Am. Chem. Soc. 136(13), 5057–5064 (2014). doi: 10.1021/ja413018f CrossRefGoogle Scholar
  7. 7.
    Butterfield, A.M., Gilomen, B., Siegel, J.S.: Kilogram-Scale Production of Corannulene. Org. Process Res. Dev. 16(4), 664–676 (2012). doi: 10.1021/op200387s CrossRefGoogle Scholar
  8. 8.
    Sun, L., Diaz-Fernandez, Y.A., Gschneidtner, T.A., Westerlund, F., Lara-Avila, S., Moth-Poulsen, K.: Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43(21), 7378–7411 (2014). doi: 10.1039/C4CS00143E CrossRefGoogle Scholar
  9. 9.
    Island, J.O., Holovchenko, A., Koole, M., Alkemade, P.F.A., Menelaou, M., Aliaga-Alcalde, N., Burzur, E., Zant, H.S.J.v.d.: Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys. Condens Matter 26(47), 474205 (2014)Google Scholar
  10. 10.
    Ito, S., Murashima, T., Ono, N., Uno, H.: A new synthesis of benzoporphyrins using 4,7-dihydro-4,7-ethano-2H-isoindole as a synthon of isoindole. Chem. Commun. 16, 1661–1662 (1998). doi: 10.1039/A803656J CrossRefGoogle Scholar
  11. 11.
    Shea, P.B., Yamada, H., Ono, N., Kanicki, J.: Solution-processed zinc tetrabenzoporphyrin thin-films and transistors. Thin Solid Films 520(11), 4031–4035 (2012). doi: 10.1016/j.tsf.2012.01.034 CrossRefGoogle Scholar
  12. 12.
    Zhen, Y., Tanaka, H., Harano, K., Okada, S., Matsuo, Y., Nakamura, E.: Organic solid solution composed of two structurally similar porphyrins for organic solar cells. J. Am. Chem. Soc. 137(6), 2247–2252 (2015). doi: 10.1021/ja513045a CrossRefGoogle Scholar
  13. 13.
    Uoyama, H., Yamada, H., Okujima, T., Uno, H.: Pentacene precursors for solution-processed OFETs. Tetrahedron 66(34), 6889–6894 (2010). doi: 10.1016/j.tet.2010.06.051 CrossRefGoogle Scholar
  14. 14.
    Akane, M., Yuko, Y., Shintetsu, G., Toshihiro, K., Hiroko, Y., Tetsuo, O., Noboru, O., Hidemitsu, U.: Organic thin-film transistor from a pentacene photoprecursor. Jpn. J. Appl. Phys. 48(5R), 051505 (2009)Google Scholar
  15. 15.
    Uoyama, H., Kim, K.S., Kuroki, K., Shin, J.-Y., Nagata, T., Okujima, T., Yamada, H., Ono, N., Kim, D., Uno, H.: Highly pure synthesis, spectral assignments, and two-photon properties of cruciform porphyrin pentamers fused with benzene units. Chems.–Eur. J. 16(13), 4063–4074 (2010). doi: 10.1002/chem.200903196 CrossRefGoogle Scholar
  16. 16.
    Tönshoff, C., Bettinger, H.F.: Photogeneration of octacene and nonacene. Angew. Chem. Int. Ed. 49(24), 4125–4128 (2010). doi: 10.1002/anie.200906355 CrossRefGoogle Scholar
  17. 17.
    Uno, H., Ito, S., Wada, M., Watanabe, H., Nagai, M., Hayashi, A., Murashima, T., Ono, N.: Synthesis and structures of pyrroles fused with rigid bicyclic ring systems at β-positions. J. Chem. Soc. Perkin Trans. 1(24), 4347–4355 (2000). doi: 10.1039/B006584F CrossRefGoogle Scholar
  18. 18.
    Uoyama, H., Yamada, H., Okujima, T.: Synthesis of Bis-naphthoporphyrins. Heterocycles 86(1), 515–534 (2012)CrossRefGoogle Scholar
  19. 19.
    Uoyama, H., Chenxin, C., Tahara, H., Shimizu, Y., Hagiwara, H., Hanasaki, Y., Yamada, H., Okujima, T., Uno, H.: Thermal behavior of bicyclo [2.2.2] octadiene-installed precursors for 2H-anthra [2, 3-c] pyrroles and anthra [2, 3-c] thiophene. Heterocycles 80(2), 1187–1196 (2010)CrossRefGoogle Scholar
  20. 20.
    Uno, H., Hashimoto, M., Fujimoto, A.: Synthesis and properties of benzene-fused diporphyrins with various metals. Heterocycles 77(2), 887–898 (2009)CrossRefGoogle Scholar
  21. 21.
    Ito, S., Ochi, N., Uno, H., Murashima, T., Ono, N.: A new synthesis of [2, 3]naphthoporphyrins. Chem. Commun. 11, 893–894 (2000). doi: 10.1039/B002213F CrossRefGoogle Scholar
  22. 22.
    Yamada, H., Kuzuhara, D., Takahashi, T., Shimizu, Y., Uota, K., Okujima, T., Uno, H., Ono, N.: Synthesis and characterization of tetraanthroporphyrins. Org. Lett. 10(14), 2947–2950 (2008). doi: 10.1021/ol8008842 CrossRefGoogle Scholar
  23. 23.
    Lash, T.D.: Porphyrin Synthesis by the “3 + 1” Approach: New Applications for an Old Methodology. Chem.—Eur. J. 2(10), 1197–1200 (1996). doi: 10.1002/chem.19960021004 CrossRefGoogle Scholar
  24. 24.
    Seidel, D., Lynch, V., Sessler, J.L.: Cyclo[8]pyrrole: a simple-to-make expanded porphyrin with no Meso Bridges. Angew. Chem. Int. Ed. 41(8), 1422–1425 (2002). doi: 10.1002/1521-3773(20020415)41:8<1422:AID-ANIE1422>3.0.CO;2-O CrossRefGoogle Scholar
  25. 25.
    Yoon, Z.S., Kwon, J.H., Yoon, M.-C., Koh, M.K., Noh, S.B., Sessler, J.L., Lee, J.T., Seidel, D., Aguilar, A., Shimizu, S., Suzuki, M., Osuka, A., Kim, D.: Nonlinear optical properties and excited-state dynamics of highly symmetric expanded porphyrins. J. Am. Chem. Soc. 128(43), 14128–14134 (2006). doi: 10.1021/ja064773k CrossRefGoogle Scholar
  26. 26.
    Eller, L.R., Stȩpień, M., Fowler, C.J., Lee, J.T., Sessler, J.L., Moyer, B.A.: Octamethyl-octaundecylcyclo[8]pyrrole: a promising sulfate anion extractant. J. Am. Chem. Soc. 129(36), 11020–11021 (2007). doi: 10.1021/ja074568k CrossRefGoogle Scholar
  27. 27.
    Sessler, J.L., Karnas, E., Kim, S.K., Ou, Z., Zhang, M., Kadish, K.M., Ohkubo, K., Fukuzumi, S.: “Umpolung” photoinduced charge separation in an anion-bound supramolecular complex. J. Am. Chem. Soc. 130(46), 15256–15257 (2008). doi: 10.1021/ja806813x CrossRefGoogle Scholar
  28. 28.
    Stępień, M., Donnio, B., Sessler, J.L.: Supramolecular liquid crystals based on Cyclo[8]pyrrole. Angew. Chem. Int. Ed. 46(9), 1431–1435 (2007). doi: 10.1002/anie.200603893 CrossRefGoogle Scholar
  29. 29.
    Gorski, A., Köhler, T., Seidel, D., Lee, J.T., Orzanowska, G., Sessler, J.L., Waluk, J.: Electronic structure, spectra, and magnetic circular dichroism of cyclohexa-, cyclohepta-, and cyclooctapyrrole. Chem.—Eur. J. 11(14), 4179–4184 (2005). doi: 10.1002/chem.200401343 CrossRefGoogle Scholar
  30. 30.
    Alkorta, I., Blanco, F., Elguero, J.: A theoretical study of the neutral and the double-charged cation of cyclo[8]pyrrole and its interaction with inorganic anions. Cent. Eur. J. Chem. 7(4), 683–689 (2009). doi: 10.2478/s11532-009-0090-3 Google Scholar
  31. 31.
    Sessler, J.L., Seidel, D.: Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. 42(42), 5134–5175 (2003). doi: 10.1002/anie.200200561 CrossRefGoogle Scholar
  32. 32.
    Rambo, B.M., Sessler, J.L.: Oligopyrrole macrocycles: receptors and chemosensors for potentially hazardous materials. Chem.—Eur. J. 17(18), 4946–4959 (2011). doi: 10.1002/chem.201100050 CrossRefGoogle Scholar
  33. 33.
    Roznyatovskiy, V.V., Lee, C.-H., Sessler, J.L.: [small pi]-Extended isomeric and expanded porphyrins. Chem. Soc. Rev. 42(5), 1921–1933 (2013). doi: 10.1039/C2CS35418G CrossRefGoogle Scholar
  34. 34.
    Okujima, T., Jin, G., Matsumoto, N., Mack, J., Mori, S., Ohara, K., Kuzuhara, D., Ando, C., Ono, N., Yamada, H., Uno, H., Kobayashi, N.: Cyclo[8]isoindoles: ring-expanded and annelated porphyrinoids. Angew. Chem. Int. Ed. 50(25), 5699–5703 (2011). doi: 10.1002/anie.201007510 CrossRefGoogle Scholar
  35. 35.
    Roznyatovskiy, V.V., Lim, J.M., Lynch, V.M., Lee, B.S., Kim, D., Sessler, J.L.: π-Extension in expanded porphyrins: Cyclo[4]naphthobipyrrole. Org. Lett. 13(20), 5620–5623 (2011). doi: 10.1021/ol2023449 CrossRefGoogle Scholar
  36. 36.
    Sarma, T., Panda, P.K.: Cyclo[4]naphthobipyrroles: naphthobipyrrole-derived Cyclo[8]pyrroles with strong near-infrared absorptions. Chem.—Eur. J. 17(50), 13987–13991 (2011). doi: 10.1002/chem.201102486 CrossRefGoogle Scholar
  37. 37.
    Okujima, T., Ando, C., Mack, J., Mori, S., Hisaki, I., Nakae, T., Yamada, H., Ohara, K., Kobayashi, N., Uno, H.: Acenaphthylene-fused Cyclo[8]pyrroles with Intense near-IR-region absorption bands. Chem.—Eur J. 19(41), 13970–13978 (2013). doi: 10.1002/chem.201301294 CrossRefGoogle Scholar
  38. 38.
    Okujima, T., Ando, C., Mori, S.: Synthesis and molecular structure of cyclo [8](9, 10-DIHYDRO-9, 10-ANTHRACENO) PYRROLE (Dedicated to Professor Victor Snieckus on the occasion of his 77th birthday). Heterocycles 88(1), 417–424 (2014)CrossRefGoogle Scholar
  39. 39.
    Köhler, T., Seidel, D., Lynch, V., Arp, F.O., Ou, Z., Kadish, K.M., Sessler, J.L.: Formation and properties of Cyclo[6]pyrrole and Cyclo[7]pyrrole. J. Am. Chem. Soc. 125(23), 6872–6873 (2003). doi: 10.1021/ja035089y CrossRefGoogle Scholar
  40. 40.
    Zhang, Z., Lim, J.M., Ishida, M., Roznyatovskiy, V.V., Lynch, V.M., Gong, H.-Y., Yang, X., Kim, D., Sessler, J.L.: Cyclo[m]pyridine[n]pyrroles: hybrid macrocycles that display expanded π-conjugation upon protonation. J. Am. Chem. Soc. 134(9), 4076–4079 (2012). doi: 10.1021/ja211985k CrossRefGoogle Scholar
  41. 41.
    Ho, I.T., Zhang, Z., Ishida, M., Lynch, V.M., Cha, W.-Y., Sung, Y.M., Kim, D., Sessler, J.L.: A hybrid macrocycle with a pyridine subunit displays aromatic character upon uranyl cation complexation. J. Am. Chem. Soc. 136(11), 4281–4286 (2014). doi: 10.1021/ja412520g CrossRefGoogle Scholar
  42. 42.
    Bui, T.-T., Iordache, A., Chen, Z., Roznyatovskiy, V.V., Saint-Aman, E., Lim, J.M., Lee, B.S., Ghosh, S., Moutet, J.-C., Sessler, J.L., Kim, D., Bucher, C.: Electrochemical synthesis of a thiophene-containing Cyclo[9]pyrrole. Chem.—Eur. J. 18(19), 5853–5859 (2012). doi: 10.1002/chem.201200196 CrossRefGoogle Scholar
  43. 43.
    Okujima, T., et al.: To be publishedGoogle Scholar
  44. 44.
    Chen, F., Tao, N.J.: Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42(3), 429–438 (2009). doi: 10.1021/ar800199a CrossRefGoogle Scholar
  45. 45.
    Narita, A., Wang, X.-Y., Feng, X., Mullen, K.: New advances in nanographene chemistry. Chem. Soc. Rev. 44(18), 6616–6643 (2015). doi: 10.1039/C5CS00183H CrossRefGoogle Scholar
  46. 46.
    Mauser, H., Hirsch, A., Hommes, N.J.R.E., Clark, T.: Chemistry of convex versus concave carbon: the reactive exterior and the inert interior of C60. J. Mol. Model. 3(10), 415–422 (1997). doi: 10.1007/s008940050059 CrossRefGoogle Scholar
  47. 47.
    Granda, M., Blanco, C., Alvarez, P., Patrick, J.W., Menéndez, R.: Chemicals from coal coking. Chem. Rev. 114(3), 1608–1636 (2014). doi: 10.1021/cr400256y CrossRefGoogle Scholar
  48. 48.
    Transition-Metal-Mediated Aromatic Ring Construction. Wiley (2013). doi: 10.1002/9781118629871
  49. 49.
    Bendikov, M., Wudl, F., Perepichka, D.F.: Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem. Rev. 104(11), 4891–4946 (2004). doi: 10.1021/cr030666m CrossRefGoogle Scholar
  50. 50.
    Okamoto, H., Eguchi, R., Hamao, S., Goto, H., Gotoh, K., Sakai, Y., Izumi, M., Takaguchi, Y., Gohda, S., Kubozono, Y.: An extended phenacene-type molecule, [8]Phenacene: synthesis and transistor application. Sci. Rep. 4, 5330 (2014). doi: 10.1038/srep05330 CrossRefGoogle Scholar
  51. 51.
    Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., Okamoto, H., Fujiwara, A., Yamaji, M., Kawasaki, N., Maniwa, Y., Kubozono, Y.: Superconductivity in alkali-metal-doped picene. Nature 464(7285), 76–79 (2010). doi: 10.1038/nature08859 CrossRefGoogle Scholar
  52. 52.
    Mallory, F.B., Mallory, C.W.: Photocyclization of Stilbenes and Related Molecules. Organic Reactions Wiley (2004). doi: 10.1002/0471264180.or030.01
  53. 53.
    Schmidt, J., Ladner, G.: Ueber das 3-Bromphenanthrenchinon und seine Abkömmlinge. Ber. Dtsch. Chem. Ges. 37(3), 3571–3572 (1904). doi: 10.1002/cber.190403703189 CrossRefGoogle Scholar
  54. 54.
    Henstockm, H.: CCCLXV.-The bromine compounds of pheranthrene. Part II. J. Chem. Soc. Trans. 123 (0), 3097–3099 (1923). doi: 10.1039/CT9232303097
  55. 55.
    Bowden, B., Read, R., Ritchie, E., Taylor, W.: Synthesis of 9,10-dihydrophenanthrenes including orchinol methyl ether. Aust. J. Chem. 28(1), 65–80 (1975). doi: 10.1071/Ch9750065 CrossRefGoogle Scholar
  56. 56.
    Khorev, O., Bosch, C.D., Probst, M., Haner, R.: Observation of the rare chrysene excimer. Chem. Sci. 5(4), 1506–1512 (2014). doi: 10.1039/C3SC53316F CrossRefGoogle Scholar
  57. 57.
    Bock, H., Huet, S., Dechambenoit, P., Hillard, E.A., Durola, F.: From chrysene to double [5]Helicenes. Eur. J. Org. Chem. 2015(5), 1033–1039 (2015). doi: 10.1002/ejoc.201403341
  58. 58.
    Ionkin, A.S., Marshall, W.J., Fish, B.M., Bryman, L.M., Wang, Y.: A tetra-substituted chrysene: orientation of multiple electrophilic substitution and use of a tetra-substituted chrysene as a blue emitter for OLEDs. Chem. Commun. 20, 2319–2321 (2008). doi: 10.1039/B715386D CrossRefGoogle Scholar
  59. 59.
    Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T., Ichikawa, J.: Concise synthesis of halogenated chrysenes ([4]Phenacenes) that favor π-stack packing in single crystals. Org. Lett. 11(17), 4026–4028 (2009). doi: 10.1021/ol901693y CrossRefGoogle Scholar
  60. 60.
    Okamoto, H., Yamaji, M., Gohda, S., Kubozono, Y., Komura, N., Sato, K., Sugino, H., Satake, K.: Facile synthesis of picene from 1,2-Di(1-naphthyl)ethane by 9-Fluorenone-sensitized photolysis. Org. Lett. 13(10), 2758–2761 (2011). doi: 10.1021/ol200874q CrossRefGoogle Scholar
  61. 61.
    Okamoto, H., Takane, T., Gohda, S., Kubozono, Y., Sato, K., Yamaji, M., Satake, K.: Efficient synthetic photocyclization for phenacenes using a continuous flow reactor. Chem. Lett. 43(7), 994–996 (2014). doi: 10.1246/cl.140182 CrossRefGoogle Scholar
  62. 62.
    Okamoto, H., Hamao, S., Goto, H., Sakai, Y., Izumi, M., Gohda, S., Kubozono, Y., Eguchi, R.: Transistor application of alkyl-substituted picene. Sci. Rep. 4, 5048 (2014). doi: 10.1038/srep05048 CrossRefGoogle Scholar
  63. 63.
    Hitosugi, S., Nakamura, Y., Matsuno, T., Nakanishi, W., Isobe, H.: Iridium-catalyzed direct borylation of phenacenes. Tetrahedron Lett. 53(9), 1180–1182 (2012). doi: 10.1016/j.tetlet.2011.12.106 CrossRefGoogle Scholar
  64. 64.
    Some, S., Dutta, B., Ray, J.K.: Synthesis of substituted benzene derivatives by homo- and hetero-coupling of 2-bromobenzaldehyde and bromovinylaldehydes followed by McMurry coupling. Tetrahedron Lett. 47(7), 1221–1224 (2006). doi: 10.1016/j.tetlet.2005.11.146 CrossRefGoogle Scholar
  65. 65.
    Xia, Y., Liu, Z., Xiao, Q., Qu, P., Ge, R., Zhang, Y., Wang, J.: Rhodium(II)-Catalyzed cyclization of Bis(N-tosylhydrazone)s: an efficient approach towards polycyclic aromatic compounds. Angew. Chem. Int. Ed. 51(23), 5714–5717 (2012). doi: 10.1002/anie.201201374 CrossRefGoogle Scholar
  66. 66.
    Chang, N.-H., Chen, X.-C., Nonobe, H., Okuda, Y., Mori, H., Nakajima, K., Nishihara, Y.: Synthesis of substituted picenes through pd-catalyzed cross-coupling reaction/annulation sequences and their physicochemical properties. Org. Lett. 15(14), 3558–3561 (2013). doi: 10.1021/ol401375n CrossRefGoogle Scholar
  67. 67.
    Keay, B.A.: Product subclass 33: arylsilanes. Sci. Synth. 4, 685–712 (2002)Google Scholar
  68. 68.
    Nakae, T., Ohnishi, R., Kitahata, Y., Soukawa, T., Sato, H., Mori, S., Okujima, T., Uno, H., Sakaguchi, H.: Effective synthesis of diiodinated picene and dibenzo[a,h]anthracene by AuCl-catalyzed double cyclization. Tetrahedron Lett. 53(13), 1617–1619 (2012). doi: 10.1016/j.tetlet.2012.01.071 CrossRefGoogle Scholar
  69. 69.
    Mamane, V., Hannen, P., Fürstner, A.: Synthesis of phenanthrenes and polycyclic heteroarenes by transition-metal catalyzed cycloisomerization reactions. Chem.—Eur. J. 10(18), 4556–4575 (2004). doi: 10.1002/chem.200400220 CrossRefGoogle Scholar
  70. 70.
    Okamoto, H., Yamaji, M., Gohda, S., Sato, K., Sugino, H., Satake, K.: Photochemical synthesis and electronic spectra of fulminene ([6]phenacene). Res. Chem. Intermed. 39(1), 147–159 (2013). doi: 10.1007/s11164-012-0639-1 CrossRefGoogle Scholar
  71. 71.
    Mallory, F.B., Butler, K.E., Evans, A.C., Mallory, C.W.: Phenacenes: A family of graphite ribbons. 1. Syntheses of some [7]phenacenes by stilbene-like photocyclizations. Tetrahedron Lett. 37(40), 7173–7176 (1996). doi: 10.1016/0040-4039(96)01618-8 CrossRefGoogle Scholar
  72. 72.
    Murai, M., Maekawa, H., Hamao, S., Kubozono, Y., Roy, D., Takai, K.: Transition-metal-catalyzed facile access to 3,11-Dialkylfulminenes for transistor applications. Org. Lett. 17(3), 708–711 (2015). doi: 10.1021/ol503723j CrossRefGoogle Scholar
  73. 73.
    Roy, D., Maekawa, H., Murai, M., Takai, K.: Short synthesis of [5]- and [7]Phenacenes with silyl groups at the axis positions. Chem.—Asian J. 10(11), 2518–2524 (2015). doi: 10.1002/asia.201500700 CrossRefGoogle Scholar
  74. 74.
    Nakae, T., et al.: To be publishedGoogle Scholar
  75. 75.
    Nakae, T., et al.: To be publishedGoogle Scholar
  76. 76.
    Mori, K., Murase, T., Fujita, M.: One-step synthesis of [16]Helicene. Angew. Chem. Int. Ed. 54(23), 6847–6851 (2015). doi: 10.1002/anie.201502436 CrossRefGoogle Scholar
  77. 77.
    Zeller, K.P.: Azulene in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme, Stuttgart, vo l. 5, Part 2C, pp. 127–418, 4th ed. (1985)Google Scholar
  78. 78.
    Fukazawa, Y., Aoyagi, M., Itô, S.: Naphtho[1,8-ab:4,5-a‘b’]diazulene, the first nonalternant isomer of dibenzopyrene. Tetrahedron Lett. 22(39), 3879–3882 (1981). doi: 10.1016/s0040-4039(01)91334-6 CrossRefGoogle Scholar
  79. 79.
    Morita, T., Takase, K.: Synthesis of 1,1’-, 2,2’-, 1,2’-, and 2,6’-Biazulenes and their derivatives by ullmann reaction. Bull. Chem. Soc. Jpn. 55(4), 1144–1152 (1982). doi: 10.1246/bcsj.55.1144 CrossRefGoogle Scholar
  80. 80.
    Porsch, M., Sigl-Seifert, G., Daub, J.: Polyazulenes and Polybiazulenes: chiroptical switching and electron transfer properties of structurally segmented systems. Adv. Mater. 9(8), 635–639 (1997). doi: 10.1002/adma.19970090809 CrossRefGoogle Scholar
  81. 81.
    Kurotobi, K., Tabata, H., Miyauchi, M., Murafuji, T.: Sugihara Y (2002) Coupling Reaction of Azulenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolanes with Haloazulenes. Synthesis 08, 1013–1016 (2002). doi: 10.1055/s-2002-31947 CrossRefGoogle Scholar
  82. 82.
    Ito, S., Terazono, T., Kubo, T., Okujima, T., Morita, N., Murafuji, T., Sugihara, Y., Fujimori, K., Kawakami, J., Tajiri, A.: Efficient preparation of 2-azulenylboronate and Miyaura-Suzuki cross-coupling reaction with aryl bromides for easy access to poly(2-azulenyl)benzenes. Tetrahedron 60(25), 5357–5366 (2004). doi: 10.1016/j.tet.2004.04.057 CrossRefGoogle Scholar
  83. 83.
    Thanh, N.C., Ikai, M., Kajioka, T., Fujikawa, H., Taga, Y., Zhang, Y., Ogawa, S., Shimada, H., Miyahara, Y., Kuroda, S., Oda, M.: Synthesis of N,N,N’,N’-tetrasubstituted 1,3-bis(4-aminophenyl)azulenes and their application to a hole-injecting material in organic electroluminescent devices. Tetrahedron 62(48), 11227–11239 (2006). doi: 10.1016/j.tet.2006.09.025 CrossRefGoogle Scholar
  84. 84.
    Ito, S., Okujima, T., Morita, N.: Preparation and stille cross-coupling reaction of the first organotin reagents of azulenes. Easy access to poly(azulen-6-yl)benzene derivatives. J. Chem. Soc. Perkin Trans. 1(16), 1896–1905 (2002). doi: 10.1039/B203836F
  85. 85.
    Okujima, T., Ito, S., Morita, N.: Preparation and Stille cross-coupling reaction of the first organotin reagents of azulenes. An efficient Pd(0)-catalyzed synthesis of 6-aryl- and biazulenes. Tetrahedron Lett. 43(7), 1261–1264 (2002). doi: 10.1016/S0040-4039(01)02347-4 CrossRefGoogle Scholar
  86. 86.
    Ito, S., Kubo, T., Morita, N., Matsui, Y., Watanabe, T., Ohta, A., Fujimori, K., Murafuji, T., Sugihara, Y., Tajiri, A.: Preparation of azulenyllithium and magnesium reagents utilizing halogen–metal exchange reaction of several iodoazulenes with organolithium or magnesium ate complex. Tetrahedron Lett. 45(14), 2891–2894 (2004). doi: 10.1016/j.tetlet.2004.02.059 CrossRefGoogle Scholar
  87. 87.
    Shibasaki, T., Ooishi, T., Yamanouchi, N., Murafuji, T., Kurotobi, K., Sugihara, Y.: A New efficient route to 2-substituted Azulenes based on Sulfonyl group directed Lithiation§. J. Org. Chem. 73(20), 7971–7977 (2008). doi: 10.1021/jo801166f CrossRefGoogle Scholar
  88. 88.
    Nakae, T., Kikuchi, T., Mori, S., Okujima, T., Murafuji, T., Uno, H.: Bisarylation of 1, 1’, 3, 3’-Tetrahalo-2, 2’-biazulene under Suzuki-Miyaura cross-coupling conditions. Chem. Lett. 43(4), 504–506 (2014). doi: 10.1246/cl.131142 CrossRefGoogle Scholar
  89. 89.
    Nakae, T., et al.: To be publishedGoogle Scholar
  90. 90.
    Gabioud, R., Vogel, P.: The 7,8-epoxy-2, 3, 5, 6-tetrakis(methylene) bicyclo[2.2.2]octane; synthesis and diels-alder reactivity. Tetrahedron 36(1), 149–154 (1980). doi: 10.1016/0040-4020(80)85037-x CrossRefGoogle Scholar
  91. 91.
    Uno, H., Nakamoto, K.-i., Kuroki, K., Fujimoto, A., Ono, N.: Synthesis of porphyrin dimers fused with a benzene unit. Chem.-Eur. J. 13(20), 5773–5784 (2007). doi: 10.1002/chem.200601644 CrossRefGoogle Scholar
  92. 92.
    Mori, S., et al.: To be publishedGoogle Scholar
  93. 93.
    Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., Tada, H.: Electrical conductance of oligothiophene molecular wires. Nano Lett. 8(4), 1237–1240 (2008). doi: 10.1021/nl0732023 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hidemitsu Uno
    • 1
    Email author
  • Takahiro Nakae
    • 2
  • Tetsuo Okujima
    • 1
  • Shigeki Mori
    • 3
  1. 1.Department of Chemistry and BiologyGraduate School of Science and Engineering, Ehime UniversityMatsuyamaJapan
  2. 2.Institute of Advanced EnergyKyoto UniversityUjiJapan
  3. 3.Division of Material ScienceAdvanced Research Support Center, Ehime UniversityMatsuyamaJapan

Personalised recommendations