Electron Transport Through a Single Molecule in Scanning Tunneling Microscopy Junction

  • N. TakagiEmail author
  • R. Hiraoka
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


A single-molecule junction (SMJ), a molecule bridging two metal electrodes, is a primitive model of molecular electronic devices and provides a unique platform to resolve fundamental questions how the electrical current flows through a single molecule and what functionality emerges arising from the original characteristics of the molecule. Recently, the conductance values of various molecules have been measured experimentally by using mechanically controllable break junction (MCBJ) and scanning tunneling microscopy (STM) junction. The accumulated database combined with first-principles theoretical calculations enables us to discuss the relation of the transport characteristics with the geometrical configuration of molecule in the junction, the molecule electronic structure and the molecule–electrode coupling. Although the conductance is always analyzed by using Landauer formula, it is still challenging to experimentally partition the conductance to the contributions from multiple transport channels and determine the total number of transport channels and their transmission probabilities. These quantities provide deeper insights on the electron transport through a single molecule and specify the SMJ like a personal identification number (PIN) code. This chapter describes a method to determine the “PIN” code based on multiple Andreev reflections (MARs) and demonstrates the application to a C60-SMJ fabricated with STM technique.



We gratefully acknowledge the support for this work by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (Grant Number 25110008).


  1. 1.
    Brinkman, W.F., Haggan, D.E., Troutman, W.W.: IEEE J. Solid State Circuits 32, 1858 (1997)CrossRefGoogle Scholar
  2. 2.
    Hoefflinger, B. (ed.): Chips 2020 A Guide to the Future of Nanoelectronics. Springer, Berlin (2012)Google Scholar
  3. 3.
    The ITRS2013 report is available at the following
  4. 4.
    Bogani, L., Wernsdorfer, W.: Nat. Mater. 7, 179 (2008)CrossRefGoogle Scholar
  5. 5.
    Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974)CrossRefGoogle Scholar
  6. 6.
    Misra, P.K.: Physics of Condensed Matter. Elsevier, New York (2012)Google Scholar
  7. 7.
    Landauer, R.: IBM J. Res. Dev. 1, 223 (1957)CrossRefGoogle Scholar
  8. 8.
    Landauer, R.: J. Phys.: Condens. Matter 1, 8099 (1989)Google Scholar
  9. 9.
    Imry, Y., Landauer, R.: Rev. Mod. Phys. 71, S306 (1999)CrossRefGoogle Scholar
  10. 10.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (2003)Google Scholar
  11. 11.
    Muller, C.J., van Ruitenbeek, J.M., de Jongh, L.J.: Phys. C 191, 485 (1992)CrossRefGoogle Scholar
  12. 12.
    van Ruitenbeek, J.M., Alvarez, A., Piñeyro, I., Grahmann, C., Joyez, P., Devoret, M.H., Esteve, D., Urbina, C.: Rev. Sci. Instrum. 67, 108 (1996)CrossRefGoogle Scholar
  13. 13.
    Smit, R.H.M., Noat, Y., Untiedt, C., Lang, N.D., van Hemert, M.C., van Ruitenbeek, J.M.: Nature 419, 906–909 (2002)CrossRefGoogle Scholar
  14. 14.
    Yu, L.H., Keane, Z.K., Ciszek, J.W., Cheng, L., Stewart, M.P., Tour, J.M., Natelson, D.: Phys. Rev. Lett. 93, 266802 (2004)CrossRefGoogle Scholar
  15. 15.
    Stroscio, J.A., Feenstra, R.M., Fein, A.P.: Phys. Rev. Lett. 57, 5 (1986)CrossRefGoogle Scholar
  16. 16.
    Feenstra, R.M., Stroscio, J.A., Fein, A.P.: Surf. Sci. 181, 295 (1987)CrossRefGoogle Scholar
  17. 17.
    Stipe, B.C., Rezaei, M.A., Ho, W.: Science 280, 1732 (1998)CrossRefGoogle Scholar
  18. 18.
    Ho, W.: J. Chem. Phys. 117, 11033 (2002)CrossRefGoogle Scholar
  19. 19.
    Heinrich, A.J., Gupta, J.A., Lutz, C.P., Eigler, D.M.: Science 306, 466 (2004)CrossRefGoogle Scholar
  20. 20.
    Tsukahara, N., Noto, K., Ohara, M., Shiraki, S., Takagi, N., Miyawaki, J., Taguchi, M., Chainani, A., Shin, S., Kawai, M.: Phys. Rev. Lett. 102, 167203 (2009)CrossRefGoogle Scholar
  21. 21.
    Muller, C.J., Vleeming, B.J., Reed, M.A., Lamba, J.J.S., Hara, R., Jones, L., Tour, J.M.: Nanotechnology 7, 409 (1996)CrossRefGoogle Scholar
  22. 22.
    Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Science 278, 252 (1997)CrossRefGoogle Scholar
  23. 23.
    Xu, B., Tao, N.J.: Science 301, 1221 (2003)CrossRefGoogle Scholar
  24. 24.
    Xiao, X., Xu, B., Tao, N.J.: J. Am. Chem. Soc. 126, 5370 (2004)CrossRefGoogle Scholar
  25. 25.
    He, J., Chen, F., Li, J., Sankey, O.F., Terazono, Y., Herrero, C., Gust, D., Moore, T.A., Moore, A.L., Lindsay, S.M.: J. Am. Chem. Soc. 127, 1384 (2005)CrossRefGoogle Scholar
  26. 26.
    Tao, N.J.: Nat. Nanotechnol. 1, 173 (2006)CrossRefGoogle Scholar
  27. 27.
    Chen, F., Li, X., Hihath, J., Huang, Z., Tao, N.: J. Am. Chem. Soc. 128, 15874 (2006)CrossRefGoogle Scholar
  28. 28.
    Kiguchi, M., Miura, S., Hara, K., Sawamura, M., Murakoshi, K.: Appl. Phys. Lett. 89, 213104 (2006)CrossRefGoogle Scholar
  29. 29.
    Djukic, D., van Ruitenbeek, J.M.: Nano Lett. 6, 789 (2006)CrossRefGoogle Scholar
  30. 30.
    Venkataraman, L., Klare, J.E., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Nature 442, 904 (2006)CrossRefGoogle Scholar
  31. 31.
    Kiguchi, M., Murata, S., Hara, K., Sawamura, M., Murakoshi, K.: Appl. Phys. Lett. 91, 053110 (2007)CrossRefGoogle Scholar
  32. 32.
    Néel, N., Kröger, J., Limot, L., Frederiksen, T., Brandbyge, M., Berndt, R.: Phys. Rev. Lett. 98, 065502 (2007)CrossRefGoogle Scholar
  33. 33.
    Böhler, T., Edtbauer, A., Scheer, E.: Phys. Rev. B 76, 125432 (2007)CrossRefGoogle Scholar
  34. 34.
    Tal, O., Krieger, M., Leerink, B., van Ruitenbeek, J.M.: Phys. Rev. Lett. 100, 196804 (2008)CrossRefGoogle Scholar
  35. 35.
    Kiguchi, M., Murakoshi, K.: J. Phys. Chem. C 112, 8140 (2008)CrossRefGoogle Scholar
  36. 36.
    Kiguchi, M., Tal, O., Wohlthat, S., Pauly, F., Krieger, M., Djukic, D., Cuevas, J.C., van Ruitenbeek, J.M.: Phys. Rev. Lett. 101, 046801 (2008)CrossRefGoogle Scholar
  37. 37.
    Kiguchi, M.: Appl. Phys. Lett. 95, 073301 (2009)CrossRefGoogle Scholar
  38. 38.
    Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D., Berndt, R.: Nat. Nanotechnol. 6, 23 (2011)CrossRefGoogle Scholar
  39. 39.
    Sedghi, G., García-Suμrez, V.M., Esdaile, L.J., Anderson, H.L., Lambert, C.J., Martín, S., Bethell, D., Higgins, S.J., Elliott, M., Bennett, N., Macdonald, J.E., Nichols, R.J.: Nat. Nanotechnol. 6, 517 (2011)CrossRefGoogle Scholar
  40. 40.
    Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., Hybertsen, M.S.: Nat. Nanotechnol. 7, 663 (2012)CrossRefGoogle Scholar
  41. 41.
    Kiguchi, M., Kaneko, S.: ChemPhysChem 13, 1116 (2012)CrossRefGoogle Scholar
  42. 42.
    Xiang, D., Jeong, H., Lee, T., Mayer, D.: Adv. Mater. 25, 4845 (2013)CrossRefGoogle Scholar
  43. 43.
    Magoga, M., Joachim, C.: Phys. Rev. B 56, 4722 (1997)CrossRefGoogle Scholar
  44. 44.
    Heurich, J., Cuevas, J.C., Wenzel, W., Schön, G.: Phys. Rev. Lett. 88, 256803 (2002)CrossRefGoogle Scholar
  45. 45.
    Tada, T., Yoshizawa, K.: ChemPhysChem 3, 1035 (2002)CrossRefGoogle Scholar
  46. 46.
    Nitzan, A., Ratner, M.A.: Science 300, 1384 (2003)CrossRefGoogle Scholar
  47. 47.
    Solomon, G.C., Gagliardi, A., Pecchia, A., Frauenheim, T., Cario, A.D., Reimers, J.R., Hush, N.S.: Nano Lett. 6, 2431 (2006)CrossRefGoogle Scholar
  48. 48.
    Paulsson, M., Brandbyge, M.: Phys. Rev. B 76, 115117 (2007)CrossRefGoogle Scholar
  49. 49.
    Bergfield, J.P., Barr, J.D., Stafford, C.A.: ACS Nano 5, 2707 (2011)CrossRefGoogle Scholar
  50. 50.
    Lörtscher, E., Gotsmann, B., Lee, Y., Yu, L., Rettner, C., Riel, H.: ACS Nano 6, 4931 (2012)CrossRefGoogle Scholar
  51. 51.
    Yoshizawa, K.: Acc. Chem. Res. 45, 1612 (2012)CrossRefGoogle Scholar
  52. 52.
    Blanter, Y.M., Büttiker, M.: Phys. Rep. 336, 1 (2000)CrossRefGoogle Scholar
  53. 53.
    Tinkham, M.: Introduction to Superconductivity. Dover, New York (2004)Google Scholar
  54. 54.
    Dynes, R.C., Narayanamurti, V., Garno, J.P.: Phys. Rev. Lett. 41, 1509 (1965)CrossRefGoogle Scholar
  55. 55.
    Andreev, A.: Sov. Phys. JETP 19, 1228 (1964)Google Scholar
  56. 56.
    Blonder, G.E., Tinkham, M., Klapwijk, T.M.: Phys. Rev. B 25, 4515 (1982)CrossRefGoogle Scholar
  57. 57.
    Klapwijk, T.M., Blonder, G.E., Tinkham, M.: Physica 109 & 110B, 1657 (1982)Google Scholar
  58. 58.
    Octavio, M., Tinkham, M., Blonder, G.E., Klapwijk, T.M.: Phys. Rev. B 27, 6739 (1983)CrossRefGoogle Scholar
  59. 59.
    Bratus, E.N., Shumeiko, V.S., Wendin, G.: Phys. Rev. Lett. 74, 2110 (1995)CrossRefGoogle Scholar
  60. 60.
    Scheer, E., Joyez, P., Esteve, D., Urbina, C., Devoret, M.H.: Phys. Rev. Lett. 78, 3535 (1997)CrossRefGoogle Scholar
  61. 61.
    Scheer, E., Agrait, N., Cuevas, J.C., Yeyati, A.L., Ludoph, B., Rodero, A.M., Bollinger, G.R., van Ruitenbeek, J.M., Urbina, C.: Nature 394, 154 (1998)CrossRefGoogle Scholar
  62. 62.
    Ludoph, B., van der Post, N., Bratus, E.N., Bezuglyi, E.V., Shumeiko, V.S., Wendin, G., van Ruitenbeek, J.M.: Phys. Rev. B 61, 8561 (2000)CrossRefGoogle Scholar
  63. 63.
    Hiraoka, R., Arafune, R., Tsukahara, N., Kawai, M., Takagi, N.: Phys. Rev. B 90, 241405(R) (2014)CrossRefGoogle Scholar
  64. 64.
    Naaman, O., Teizer, W., Dynes, R.C.: Rev. Sci. Instru. 72, 1688 (2001)CrossRefGoogle Scholar
  65. 65.
    Chen, W., Madhavan, V., Jamneala, T., Crommie, M.F.: Phys. Rev. Lett. 80, 1469 (1998)CrossRefGoogle Scholar
  66. 66.
    Li, H.I., Franke, K.J., Pascual, J.I., Bruch, L.W., Diehl, R.D.: Phys. Rev. B 80, 085415 (2009)CrossRefGoogle Scholar
  67. 67.
    Pascual, J.I., Gómez-Herrero, J., Sánchez-Portal, D., Rust, H.-P.: J. Chem. Phys. 117, 9531 (2002)CrossRefGoogle Scholar
  68. 68.
    Lu, X., Grobis, M., Khoo, K.H., Louie, S.G., Crommie, M.F.: Phys. Rev. B 70, 115418 (2004)CrossRefGoogle Scholar
  69. 69.
    Savina, M.R., Lohr, L.L., Francis, A.H.: Chem. Phys. Lett. 205, 200 (1993)CrossRefGoogle Scholar
  70. 70.
    Torrente, I.F., Franke, K.J., Pascual, J.I.: J. Phys.: Condens. Matter 20, 184001 (2008)Google Scholar
  71. 71.
    Schulze, G., Franke, K.J., Pascual, J.I.: New J. Phys. 10, 065005 (2008)CrossRefGoogle Scholar
  72. 72.
    Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63, 121104 (2001)CrossRefGoogle Scholar
  73. 73.
    Kobayashi, N., Ozaki, T., Tagami, K., Tsukada, M., Hirose, K.: Jpn. J. Appl. Phys. 45, 2151 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Advanced Materials ScienceThe University of TokyoKashiwa, ChibaJapan
  2. 2.Tsukuba Material Development LaboratorySumitomo Chemical Co., LtdTsukubaJapan

Personalised recommendations