Skip to main content

Interelectrode Stretched Photoelectro-Functional DNA Nanowire

  • Conference paper
  • First Online:
Molecular Architectonics

Abstract

DNA/functional molecules complexes have attracted much attention for fabricating DNA-based functional nanowires. In this chapter, we describe the DNA-based functional nanowires stretched and immobilized between a pair of electrodes. First, previously reported methods for stretching of DNA as nanowires will be reviewed. Then, we mention the morphology of DNA nanowires on mica substrate without stretching and alignment treatments. Next, in order to stretch the DNA nanowires, dielectrophoretic trapping method was performed. High frequency and high electric field voltage was applied to DNA aqueous solution between a pair of comb-shaped Au electrodes. The structures of the stretched and immobilized DNA nanowires were analyzed with AFM. As the result, huge numbers of DNA nanowires was aligned and immobilized between the electrodes, forming the DNA brush-like structure. Aiming for investigation of optoelectronic properties of single molecular DNA nanowire, we have examined adequate method for obtaining singly immobilized DNA nanowire in terms of DNA concentration, applied voltage, and shape of the electrodes. As a result, we successfully fabricated almost singly stretched and immobilized DNA nanowires. Then, functionalization of the stretched DNA nanowires was subsequently carried out. As the photoelectro-functional molecule, tris(bipyridine)ruthenium(II) complex (Ru(bpy) 2+3 ) was associated to the stretched DNA nanowires to introduce photoelectronic functionalities. The height of DNA/Ru(bpy) 2+3 nanowires was ranging from 1.5 to 3.5 nm, which was higher than that of the native DNA. This indicated that the Ru(bpy) 2+3 was successfully associated to stretched DNA nanowires. Fluorescent microscopy and I–V measurement were also suggested the formation of stretched and immobilized DNA/Ru(bpy) 2+3 functional nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007). doi:10.1038/nmat2028

    Article  CAS  Google Scholar 

  2. Ghosh, A.W., Rakshit, T., Datta, S.: Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4, 565–568 (2004). doi:10.1021/nl035109u

    Article  CAS  Google Scholar 

  3. Green, J.E., Wook, Choi J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H-R., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007). doi:10.1038/nature05462; Husband, C.P., Husband, S.M., Daniels, J.S., Tour, J.M.: Logic and memory with nanocell circuits. IEEE Trans. Electron Devices 50, 1865–1875 (2003). doi:10.1109/TED.2003.815860

  4. Xue, Y., Datta, S., Ratner, M.A.: First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem. Phys. 281, 151–170 (2002). doi:10.1016/S0301-0104(02)00446-9

    Article  CAS  Google Scholar 

  5. Cobden, D.H.: Molecular electronics: nanowires begin to shine. Nature 409, 32–33 (2001). doi:10.1038/35051205

    Article  CAS  Google Scholar 

  6. Seeman, N.C.: DNA in a material world. 421, 1122–1126 (2003); Grote, J.G., Hagen, J. a., Zetts, J.S., Nelson, R.L., Diggs, D.E., Stone, M.O., Yaney, P.P., Heckman, E., Zhang, C., Steier, W.H., Jen, A.K.-Y., Dalton, L.R., Ogata, N., Curley, M.J., Clarson, S.J., Hopkins, F.K.: Investigation of polymers and marine-derived DNA in optoelectronics. J. Phys. Chem. B. 108, 8584–8591 (2004). doi:10.1021/jp038056d

  7. Liu, X., Diao, H., Nishi, N.: Applied chemistry of natural DNA. Chem. Soc. Rev. 37, 2745 (2008). doi:10.1039/b801433g

    Article  CAS  Google Scholar 

  8. Matulis, D., Rouzina, I., Bloomfield, Va: Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. J. Mol. Biol. 296, 1053–1063 (2000). doi:10.1006/jmbi.1999.3470

    Article  CAS  Google Scholar 

  9. Barton, J.K., Long, E.: On demonstrating DNA intercalation. Acc. Chem. Res. 23, 271–273 (1990). doi:10.1021/ar00177a001

    Article  Google Scholar 

  10. Kumar, C.V., Turner, R.S., Asuncion, E.H.: Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J. Photochem. Photobiol. A Chem. 74, 231–238 (1993). doi:10.1016/1010-6030(93)80121-O

    Article  CAS  Google Scholar 

  11. Kawabe, Y., Wang, L., Horinouchi, S., Ogata, N.: Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films. Adv. Mater. 12, 1281–1283 (2000). doi:10.1002/1521-4095(200009)12:17<1281:AID-ADMA1281>3.0.CO;2-0

    Article  CAS  Google Scholar 

  12. Yukimoto, T., Uemura, S., Kamata, T., Nakamura, K., Kobayashi, N.: Non-volatile transistor memory fabricated using DNA and eliminating influence of mobile ions on electric properties. J. Mater. Chem. 21, 15575 (2011). doi:10.1039/c1jm12229k; Liang, L., Mitsumura, Y., Nakamura, K., Uemura, S., Kamata, T., Kobayashi, N.: Temperature dependence of transfer characteristics of OTFT memory based on DNA-CTMA gate dielectric. Org. Electron. Phys. Mater. Appl. 28, 294–298 (2016). doi:10.1016/j.orgel.2015.11.003

  13. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). doi:10.1038/382607a0

    Article  CAS  Google Scholar 

  14. Du, X.S., Zhou, C.F., Wang, G.T., Mai, Y.W. Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem. Mater. 20, 3806–3808 (2008). doi:10.1021/cm800689b; Dai, L., Wang, Q., Wan, M.: Direct observation of conformational transitions for polyaniline chains intercalated in clay particles upon secondary doping. J. Mater. Sci. Lett. 19, 1645–1647 (2000). doi:10.1023/A:1006762026536

  15. Uemura, S., Shimakawa, T., Kusabuka, K., Nakahira, T., Kobayashi, N.: Template photopolymerization of dimeric aniline by photocatalytic reaction with Ru(bpy)(3)(2+) in the presence of DNA. J. Mater. Chem. 11, 267–268 (2001). doi:10.1039/b009161h

    Article  CAS  Google Scholar 

  16. Kobayashi, N., Uemura, S., Kusabuka, K., Nakahira, T., Takahashi, H.: An organic red-emitting diode with a water-soluble DNA-polyaniline complex containing Ru(bpy) 2+3 . J. Mater. Chem. 11, 1766–1768 (2001). doi:10.1039/b102882k

    Article  CAS  Google Scholar 

  17. Nakamura, K., Ishikawa, T., Nishioka, D., Ushikubo, T., Kobayashi, N.: Color-tunable multilayer organic light emitting diode composed of DNA complex and tris(8-hydroxyquinolinato)aluminum. Appl. Phys. Lett. 97, 2010–2013 (2010). doi:10.1063/1.3512861

    Article  Google Scholar 

  18. Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., van Slegtenhorst, M., Wolfe, J., Povey, S., Beckmann, J.S., Bensimon, A.: Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277(80), 1518–1523 (1997). doi:10.1126/science.277.5331.1518; Kago, K., Matsuoka, H., Yoshitome, R., Yamaoka, H., Ijiro, K., Shimomura, M.: Direct in situ observation of a lipid monolayer-DNA complex at the air-water interface by x-ray reflectometry. Langmuir 15, 5193–5196 (1999). doi:10.1021/la981352a

  19. Bensimon, a., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., Bensimon, D.: Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994)

    Google Scholar 

  20. Li, J., Bai, C., Wang, C., Zhu, C., Lin, Z., Li, Q., Cao, E.: A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Res. 26, 4785–4786 (1998). doi:10.1093/nar/26.20.4785

    Article  CAS  Google Scholar 

  21. Dukkipati, V.R., Pang, S.W.: The immobilization of DNA molecules to electrodes in confined channels at physiological pH. Nanotechnology 19, 465102 (2008). doi:10.1088/0957-4484/19/46/465102

    Article  CAS  Google Scholar 

  22. Matsuo, Y., Ijiro, K., Shimomura, M.: Stretching of single DNA molecules by langmuir-blodgett method. Int. J. Nanosci. 01, 695–699 (2002). doi:10.1142/S0219581X02000917

    Article  CAS  Google Scholar 

  23. Smith, S.B., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996). doi:10.1126/science.271.5250.795

    Article  CAS  Google Scholar 

  24. Kuzyk, A., Yurke, B., Toppari, J.J., Linko, V., Törmä, P.: Dielectrophoretic trapping of DNA origami. Small 4, 447–450 (2008). doi:10.1002/smll.200701320

    Article  CAS  Google Scholar 

  25. Voldman, J., Braff, R.A., Toner, M., Gray, M.L., Schmidt, M.A.: Holding forces of single-particle dielectrophoretic traps. Biophys. J. 80, 531–541 (2001). doi:10.1016/S0006-3495(01)76035-3

    Article  CAS  Google Scholar 

  26. Washizu, M., Kurosawa, O., Arai, I., Suzuki, S., Shimamoto, N.: Applications of electrostatic stretch-and-positioning of DNA. IEEE Trans. Ind. Appl. 31, 447–456 (1995). doi:10.1109/28.382102A

    Article  CAS  Google Scholar 

  27. Suzuki, S., Yamanashi, T., Tazawa, S., Kurosawa, O., Washizu, M.: Quantitative analysis of DNA orientation in stationary AC electric fields using fluorescence anisotropy. IEEE Trans. Ind. Appl. 34, 75–83 (1998). doi:10.1109/28.658723

    Article  CAS  Google Scholar 

  28. Chou, C.-F., Tegenfeldt, J.O., Bakajin, O., Chan, S.S., Cox, E.C., Darnton, N., Duke, T., Austin, R.H.: Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J. 83, 2170–2179 (2002). doi:10.1016/S0006-3495(02)73977-5

    Article  CAS  Google Scholar 

  29. Tuukkanen, S., Toppari, J.J., Kuzyk, A., Hirviniemi, L., Hytönen, V.P., Ihalainen, T., Törma, P.: Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett. 6, 1339–1343 (2006). doi:10.1021/nl060771m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Nippon Chemical Feed Co. Ltd for providing the salmon testes DNA sample. This work is partly supported by Grant-in-Aid for Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architechtonics” (No. 26110503) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Ogasawara Foundation, and The Futaba Electronics Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kobayashi, N., Nakamura, K. (2017). Interelectrode Stretched Photoelectro-Functional DNA Nanowire. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_12

Download citation

Publish with us

Policies and ethics