Advertisement

Interelectrode Stretched Photoelectro-Functional DNA Nanowire

  • Norihisa KobayashiEmail author
  • Kazuki Nakamura
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

DNA/functional molecules complexes have attracted much attention for fabricating DNA-based functional nanowires. In this chapter, we describe the DNA-based functional nanowires stretched and immobilized between a pair of electrodes. First, previously reported methods for stretching of DNA as nanowires will be reviewed. Then, we mention the morphology of DNA nanowires on mica substrate without stretching and alignment treatments. Next, in order to stretch the DNA nanowires, dielectrophoretic trapping method was performed. High frequency and high electric field voltage was applied to DNA aqueous solution between a pair of comb-shaped Au electrodes. The structures of the stretched and immobilized DNA nanowires were analyzed with AFM. As the result, huge numbers of DNA nanowires was aligned and immobilized between the electrodes, forming the DNA brush-like structure. Aiming for investigation of optoelectronic properties of single molecular DNA nanowire, we have examined adequate method for obtaining singly immobilized DNA nanowire in terms of DNA concentration, applied voltage, and shape of the electrodes. As a result, we successfully fabricated almost singly stretched and immobilized DNA nanowires. Then, functionalization of the stretched DNA nanowires was subsequently carried out. As the photoelectro-functional molecule, tris(bipyridine)ruthenium(II) complex (Ru(bpy) 3 2+ ) was associated to the stretched DNA nanowires to introduce photoelectronic functionalities. The height of DNA/Ru(bpy) 3 2+ nanowires was ranging from 1.5 to 3.5 nm, which was higher than that of the native DNA. This indicated that the Ru(bpy) 3 2+ was successfully associated to stretched DNA nanowires. Fluorescent microscopy and I–V measurement were also suggested the formation of stretched and immobilized DNA/Ru(bpy) 3 2+ functional nanowires.

Notes

Acknowledgements

The authors express their appreciation to the Nippon Chemical Feed Co. Ltd for providing the salmon testes DNA sample. This work is partly supported by Grant-in-Aid for Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architechtonics” (No. 26110503) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Ogasawara Foundation, and The Futaba Electronics Memorial Foundation.

References

  1. 1.
    Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007). doi: 10.1038/nmat2028 CrossRefGoogle Scholar
  2. 2.
    Ghosh, A.W., Rakshit, T., Datta, S.: Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4, 565–568 (2004). doi: 10.1021/nl035109u CrossRefGoogle Scholar
  3. 3.
    Green, J.E., Wook, Choi J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H-R., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007). doi: 10.1038/nature05462; Husband, C.P., Husband, S.M., Daniels, J.S., Tour, J.M.: Logic and memory with nanocell circuits. IEEE Trans. Electron Devices 50, 1865–1875 (2003). doi: 10.1109/TED.2003.815860
  4. 4.
    Xue, Y., Datta, S., Ratner, M.A.: First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem. Phys. 281, 151–170 (2002). doi: 10.1016/S0301-0104(02)00446-9 CrossRefGoogle Scholar
  5. 5.
    Cobden, D.H.: Molecular electronics: nanowires begin to shine. Nature 409, 32–33 (2001). doi: 10.1038/35051205 CrossRefGoogle Scholar
  6. 6.
    Seeman, N.C.: DNA in a material world. 421, 1122–1126 (2003); Grote, J.G., Hagen, J. a., Zetts, J.S., Nelson, R.L., Diggs, D.E., Stone, M.O., Yaney, P.P., Heckman, E., Zhang, C., Steier, W.H., Jen, A.K.-Y., Dalton, L.R., Ogata, N., Curley, M.J., Clarson, S.J., Hopkins, F.K.: Investigation of polymers and marine-derived DNA in optoelectronics. J. Phys. Chem. B. 108, 8584–8591 (2004). doi: 10.1021/jp038056d
  7. 7.
    Liu, X., Diao, H., Nishi, N.: Applied chemistry of natural DNA. Chem. Soc. Rev. 37, 2745 (2008). doi: 10.1039/b801433g CrossRefGoogle Scholar
  8. 8.
    Matulis, D., Rouzina, I., Bloomfield, Va: Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. J. Mol. Biol. 296, 1053–1063 (2000). doi: 10.1006/jmbi.1999.3470 CrossRefGoogle Scholar
  9. 9.
    Barton, J.K., Long, E.: On demonstrating DNA intercalation. Acc. Chem. Res. 23, 271–273 (1990). doi: 10.1021/ar00177a001 CrossRefGoogle Scholar
  10. 10.
    Kumar, C.V., Turner, R.S., Asuncion, E.H.: Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J. Photochem. Photobiol. A Chem. 74, 231–238 (1993). doi: 10.1016/1010-6030(93)80121-O CrossRefGoogle Scholar
  11. 11.
    Kawabe, Y., Wang, L., Horinouchi, S., Ogata, N.: Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films. Adv. Mater. 12, 1281–1283 (2000). doi: 10.1002/1521-4095(200009)12:17<1281:AID-ADMA1281>3.0.CO;2-0 CrossRefGoogle Scholar
  12. 12.
    Yukimoto, T., Uemura, S., Kamata, T., Nakamura, K., Kobayashi, N.: Non-volatile transistor memory fabricated using DNA and eliminating influence of mobile ions on electric properties. J. Mater. Chem. 21, 15575 (2011). doi: 10.1039/c1jm12229k; Liang, L., Mitsumura, Y., Nakamura, K., Uemura, S., Kamata, T., Kobayashi, N.: Temperature dependence of transfer characteristics of OTFT memory based on DNA-CTMA gate dielectric. Org. Electron. Phys. Mater. Appl. 28, 294–298 (2016). doi: 10.1016/j.orgel.2015.11.003
  13. 13.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). doi: 10.1038/382607a0 CrossRefGoogle Scholar
  14. 14.
    Du, X.S., Zhou, C.F., Wang, G.T., Mai, Y.W. Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem. Mater. 20, 3806–3808 (2008). doi: 10.1021/cm800689b; Dai, L., Wang, Q., Wan, M.: Direct observation of conformational transitions for polyaniline chains intercalated in clay particles upon secondary doping. J. Mater. Sci. Lett. 19, 1645–1647 (2000). doi: 10.1023/A:1006762026536
  15. 15.
    Uemura, S., Shimakawa, T., Kusabuka, K., Nakahira, T., Kobayashi, N.: Template photopolymerization of dimeric aniline by photocatalytic reaction with Ru(bpy)(3)(2+) in the presence of DNA. J. Mater. Chem. 11, 267–268 (2001). doi: 10.1039/b009161h CrossRefGoogle Scholar
  16. 16.
    Kobayashi, N., Uemura, S., Kusabuka, K., Nakahira, T., Takahashi, H.: An organic red-emitting diode with a water-soluble DNA-polyaniline complex containing Ru(bpy)32+. J. Mater. Chem. 11, 1766–1768 (2001). doi: 10.1039/b102882k CrossRefGoogle Scholar
  17. 17.
    Nakamura, K., Ishikawa, T., Nishioka, D., Ushikubo, T., Kobayashi, N.: Color-tunable multilayer organic light emitting diode composed of DNA complex and tris(8-hydroxyquinolinato)aluminum. Appl. Phys. Lett. 97, 2010–2013 (2010). doi: 10.1063/1.3512861 CrossRefGoogle Scholar
  18. 18.
    Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., van Slegtenhorst, M., Wolfe, J., Povey, S., Beckmann, J.S., Bensimon, A.: Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277(80), 1518–1523 (1997). doi: 10.1126/science.277.5331.1518; Kago, K., Matsuoka, H., Yoshitome, R., Yamaoka, H., Ijiro, K., Shimomura, M.: Direct in situ observation of a lipid monolayer-DNA complex at the air-water interface by x-ray reflectometry. Langmuir 15, 5193–5196 (1999). doi: 10.1021/la981352a
  19. 19.
    Bensimon, a., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., Bensimon, D.: Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994)Google Scholar
  20. 20.
    Li, J., Bai, C., Wang, C., Zhu, C., Lin, Z., Li, Q., Cao, E.: A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Res. 26, 4785–4786 (1998). doi: 10.1093/nar/26.20.4785 CrossRefGoogle Scholar
  21. 21.
    Dukkipati, V.R., Pang, S.W.: The immobilization of DNA molecules to electrodes in confined channels at physiological pH. Nanotechnology 19, 465102 (2008). doi: 10.1088/0957-4484/19/46/465102 CrossRefGoogle Scholar
  22. 22.
    Matsuo, Y., Ijiro, K., Shimomura, M.: Stretching of single DNA molecules by langmuir-blodgett method. Int. J. Nanosci. 01, 695–699 (2002). doi: 10.1142/S0219581X02000917 CrossRefGoogle Scholar
  23. 23.
    Smith, S.B., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996). doi: 10.1126/science.271.5250.795 CrossRefGoogle Scholar
  24. 24.
    Kuzyk, A., Yurke, B., Toppari, J.J., Linko, V., Törmä, P.: Dielectrophoretic trapping of DNA origami. Small 4, 447–450 (2008). doi: 10.1002/smll.200701320 CrossRefGoogle Scholar
  25. 25.
    Voldman, J., Braff, R.A., Toner, M., Gray, M.L., Schmidt, M.A.: Holding forces of single-particle dielectrophoretic traps. Biophys. J. 80, 531–541 (2001). doi: 10.1016/S0006-3495(01)76035-3 CrossRefGoogle Scholar
  26. 26.
    Washizu, M., Kurosawa, O., Arai, I., Suzuki, S., Shimamoto, N.: Applications of electrostatic stretch-and-positioning of DNA. IEEE Trans. Ind. Appl. 31, 447–456 (1995). doi: 10.1109/28.382102A CrossRefGoogle Scholar
  27. 27.
    Suzuki, S., Yamanashi, T., Tazawa, S., Kurosawa, O., Washizu, M.: Quantitative analysis of DNA orientation in stationary AC electric fields using fluorescence anisotropy. IEEE Trans. Ind. Appl. 34, 75–83 (1998). doi: 10.1109/28.658723 CrossRefGoogle Scholar
  28. 28.
    Chou, C.-F., Tegenfeldt, J.O., Bakajin, O., Chan, S.S., Cox, E.C., Darnton, N., Duke, T., Austin, R.H.: Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J. 83, 2170–2179 (2002). doi: 10.1016/S0006-3495(02)73977-5 CrossRefGoogle Scholar
  29. 29.
    Tuukkanen, S., Toppari, J.J., Kuzyk, A., Hirviniemi, L., Hytönen, V.P., Ihalainen, T., Törma, P.: Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett. 6, 1339–1343 (2006). doi: 10.1021/nl060771m CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Graduate School of EngineeringMolecular Chirality Research Center, Chiba UniversityInage-ku, ChibaJapan

Personalised recommendations