Assembly and Manipulation of Adsorbed Radical Molecules for Spin Control

  • Tadahiro KomedaEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


In this article, recent studies of the surface spin of adsorbed molecules by the detection of the Kondo resonance are reviewed. The Kondo resonance is a phenomenon that is caused by an interaction between an isolated spin and conduction electrons. First observed in the 1930s as an anomalous increase in the low-temperature resistance of metals embedded with magnetic atoms, the Kondo physics mainly studied the effects of bulk magnetic impurities in the resistivity. In the last 15 years, it has undergone a revival by scanning tunneling microscope (STM) which enables the measurement of the Kondo resonance at surfaces using an atomic scale point contact. The detection of the Kondo resonance can be a powerful tool to explore surface magnetism. Researches on spin behavior of double-decker and triple-decker phthalocyanine (Pc) molecules adsorbed on surfaces are examined, together with their bonding configuration and electronic structure. These molecules attract attentions as a material for molecule spintronics of special interests, since some of the double-decker Pc molecules show single-molecule magnet (SMM) behavior that exhibits slow relaxation of their magnetization induced by the combined effects of high-spin ground states and the zero-field splitting. The SMM behavior of the molecule is examined in terms of the detection of the Kondo resonance for the molecule.


  1. 1.
    Lenznoff, C.C., Lever, A.B.P.: Phthalocyanines: Properties and Applications. VCH, New York (1993)Google Scholar
  2. 2.
    de la Torre, G., Claessens, C.G., Torres, T.: Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem. Commun. 20, 2000–2015 (2007)CrossRefGoogle Scholar
  3. 3.
    Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S., Kaizu, Y.: Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003); Ishikawa, N., Sugita, M., Tanaka, N., Ishikawa, T., Koshihara, S.Y., Kaizu, Y.: Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. Inorg. Chem. 43, 5498–5500 (2004); Ishikawa, N.: Single molecule magnet with single lanthanide ion. Polyhedron 26, 2147–2153 (2007)Google Scholar
  4. 4.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)CrossRefGoogle Scholar
  5. 5.
    Gatteschi, D., Sessoli, R.: Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003)CrossRefGoogle Scholar
  6. 6.
    Bogani, L., Wernsdorfer, W.: Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008)CrossRefGoogle Scholar
  7. 7.
    Rocha, A.R., Garcia-Suarez, V.M., Bailey, S.W., Lambert, C.J., Ferrer, J., Sanvito, S.: Towards molecular spintronics. Nat. Mater. 4, 335–339 (2005)Google Scholar
  8. 8.
    Irie, M.: Photochromism: memories and switches—introduction. Chem. Rev. 100, 1683–1683 (2000); Yamase, T.: Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 98, 307–325 (1998)Google Scholar
  9. 9.
    Hicks, R.G.: Stable Radicals Fundamentals and Applied Aspects of Odd-Electron Compounds. Wiley (2010)Google Scholar
  10. 10.
    Christou, G., Gatteschi, D., Hendrickson, D.N., Sessoli, R.: Single-molecule magnets. Mrs Bulletin 25, 66–71 (2000)CrossRefGoogle Scholar
  11. 11.
    Coronado, E., Forment-Aliaga, A., Gaita-Ariño, A., Giménez-Saiz, C., Romero, F.M., Wernsdorfer, W.: Polycationic Mn12 single-molecule magnets as electron reservoirs with S > 10 ground states. Angew. Chem. Int. Ed. 43, 6152–6156 (2004); Naitabdi, A., Bucher, J.P., Gerbier, P., Rabu, P., Drillon, M.: Self-assembly and magnetism of Mn12 nanomagnets on native and functionalized gold surfaces. Adv. Mater. 17, 1612–1616 (2005); Heersche, H.B., de Groot, Z., Folk, J.A., van der Zant, H.S.J., Romeike, C., Wegewijs, M.R., Zobbi, L., Barreca, D., Tondello, E., Cornia, A.: Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006)Google Scholar
  12. 12.
    Gatteschi, D., Sessoli, R., Cornia, A.: Single-molecule magnets based on iron(III) oxo clusters. Chem. Commun., 725–732 (2000)Google Scholar
  13. 13.
    Buchler, J.W., Ng, D.K.P.: The Porphyrin Handbook. In: Kadish, K.M., Smith, K.M., Guilard, R. (eds.), vol. 3, pp. 245. Academic Press, San Diego (2000)Google Scholar
  14. 14.
    Zhang, Y.F., Isshiki, H., Katoh, K., Yoshida, Y., Yamashita, M., Miyasaka, H., Breedlove, B.K., Kajiwara, T., Takaishi, S., Komeda, T.: A low-temperature scanning tunneling microscope investigation of a nonplanar dysprosium-phthalocyanine adsorption on Au(111). J. Phys. Chem. C 113, 14407–14410 (2009); Zhang, Y.F., Isshiki, H., Katoh, K., Yoshida, Y., Yamashita, M., Miyasaka, H., Breedlove, B.K., Kajiwara, T., Takaishi, S., Komeda, T.: Low-temperature scanning tunneling microscopy investigation of bis(phthalocyaninato)yttrium growth on Au(111): from individual molecules to two-dimensional domains. J. Phys. Chem. C 113, 9826–9830 (2009)Google Scholar
  15. 15.
    Rosei, F., Schunack, M., Naitoh, Y., Jiang, P., Gourdon, A., Laegsgaard, E., Stensgaard, I., Joachim, C., Besenbacher, F.: Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 71, 95–146 (2003); Frommer, J.: Scanning tunneling microscopy and atomic force microscopy in organic chemistry. Angew. Chem. Int. Ed. 31, 1298–1328 (1992)Google Scholar
  16. 16.
    Hallback, A.-S., Oncel, N., Huskens, J., Zandvliet, H.J.W., Poelsema, B.: Inelastic electron tunneling spectroscopy on decanethiol at elevated temperatures. Nano Lett. 4, 2393–2395 (2004)CrossRefGoogle Scholar
  17. 17.
    Kresse, G., Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996); Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)Google Scholar
  18. 18.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  19. 19.
    Lu, X., Hipps, K.W., Wang, X.D., Mazur, U.: Scanning tunneling microscopy of metal phthalocyanines: d7 and d9 cases. J. Amer. Chem. Soc. 118, 7197–7202 (1996); Barlow, D.E., Hipps, K.W.: Scanning tunneling microscopy and spectroscopy study of vanadyl phthalocyanine on Au(111): the effect of oxygen binding and orbital mediated tunneling on the apparent corrugation. J. Phys. Chem. B 104, 5993–6000 (2000)Google Scholar
  20. 20.
    Lu, X., Hipps, K.W.: Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J. Phys. Chem. B 101, 5391–5396 (1997)CrossRefGoogle Scholar
  21. 21.
    Chizhov, I., Scoles, G., Kahn, A.: The influence of steps on the orientation of copper phthalocyanine monolayers on Au(111). Langmuir 16, 4358–4361 (2000)CrossRefGoogle Scholar
  22. 22.
    Walzer, K., Hietschold, M.: STM and STS investigation of ultrathin tin phthalocyanine layers adsorbed on HOPG(0001) and Au(111). Surf. Sci. 471, 1 (2001)CrossRefGoogle Scholar
  23. 23.
    Barlow, D., Scudiero, L., Hipps, K.W.: Scanning tunneling microscopy of 1, 2, and 3 layers of electroactive compounds. Ultramicroscopy 97, 47 (2003); Takada, M., Tada, H.: Low temperature scanning tunneling microscopy of phthalocyanine multilayers on Au(111) surfaces. Chem. Phys. Lett. 392, 265–269 (2004)Google Scholar
  24. 24.
    Cheng, Z.H., Gao, L., Deng, Z.T., Liu, Q., Jiang, N., Lin, X., He, X.B., Du, S.X., Gao, H.J.: Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C 111, 2656–2660 (2007)CrossRefGoogle Scholar
  25. 25.
    Komeda, T., Isshiki, H., Liu, J.: Metal-free phthalocyanine (H2Pc) molecule adsorbed on the Au(111) surface: formation of a wide domain along a single lattice direction. Sci. Technol. Adv. Mat. 11, 054602 (2010)CrossRefGoogle Scholar
  26. 26.
    Takada, M., Tada, H.: Scanning tunneling microscopy and spectroscopy of phthalocyanine molecules on metal surfaces. Jpn. J. Appl. Phys. Part 1 44, 5332–5335 (2005); Takada, M., Tada, H.: Direct observation of adsorption-induced electronic states by low-temperature scanning tunneling microscopy. Ultramicroscopy 105, 22–25 (2005)Google Scholar
  27. 27.
    Nilson, K., Ahlund, J., Brena, B., Gothelid, E., Schiessling, J., Martensson, N., Puglia, C.: Scanning tunneling microscopy study of metal-free phthalocyanine monolayer structures on graphite. J. Chem. Phys. 127, 114702 (2007)CrossRefGoogle Scholar
  28. 28.
    Smykalla, L., Shukrynau, P., Hietschold, M.: Investigation of ultrathin layers of Bis(phthalocyaninato)lutetium(III) on Graphite. J. Phys. Chem. C 116, 8008–8013 (2012)CrossRefGoogle Scholar
  29. 29.
    Mason, R., Williams, G.A., Fielding, P.E.: Structural chemistry of phthalocyaninato-cobalt(II) and manganese(II). J. Chem. Soc.-Dalton Trans., 676–683 (1979); Heutz, S., Bayliss, S.M., Middleton, R.L., Rumbles, G., Jones, T.S.: Polymorphism in phthalocyanine thin films: mechanism of the alfa to beta transition. J. Phys. Chem. B 104, 7124–7129 (2000); Hoshino, A., Takenaka, Y., Miyaji, H. Redetermination of the crystal structure of alfa-copper phthalocyanine grown on KCl. Acta Crystallogr. Sect. B: Struct. Sci 59, 393–403 (2003)Google Scholar
  30. 30.
    Takada, M., Tada, H.: Low temperature scanning tunneling microscopy of phthalocyanine multilayers on Au(111) surfaces. Chem. Phys. Lett. 392, 265–269 (2004)CrossRefGoogle Scholar
  31. 31.
    Komeda, T., Isshiki, H., Liu, J., Katoh, K., Shirakata, M., Breedlove, B.K., Yamashita, M.: Variation of Kondo Peak observed in the assembly of heteroleptic 2,3-naphthalocyaninato phthalocyaninato Tb(III) double-decker complex on Au(111). ACS Nano 7, 1092–1099 (2013)CrossRefGoogle Scholar
  32. 32.
    Isshiki, H., Liu, J., Katoh, K., Yamashita, M., Miyasaka, H., Breedlove, B.K., Takaishi, S., Komeda, T.: Scanning tunneling microscopy investigation of Tris(phthalocyaninato)yttrium triple-decker molecules deposited on Au(111). J. Phys. Chem. C 114, 12202–12206 (2010)CrossRefGoogle Scholar
  33. 33.
    Benihya, K., Mossoyan-Déneux, M., Hahn, F., Boucharat, N., Terzian, G.: Synthesis, crystal structure and spectral characterization, of a new phase of Tris(phthalocyaninato)dibismuth(III), Bi2(Pc)3. Eur. J. Inorg. Chem. 2000, 1771–1779 (2000)CrossRefGoogle Scholar
  34. 34.
    Chambrier, I., Hughes, D.L., Swarts, J.C., Isare, B., Cook, M.J.: First example of a di-cadmium tris-phthalocyanine triple-decker sandwich complex. Chem. Commun., 3504–3506 (2006)Google Scholar
  35. 35.
    Katoh, K., Kajiwara, T., Nakano, M., Nakazawa, Y., Wernsdorfer, W., Ishikawa, N., Breedlove, B.K., Yamashita, M.: Magnetic relaxation of single-molecule magnets in an external magnetic field: an ising dimer of a Terbium(III)-Phthalocyaninate triple-decker complex. Chem. Eur. J. 17, 117–122 (2011)CrossRefGoogle Scholar
  36. 36.
    Wiesendanger, R., Güntherodt, H.J., Güntherodt, G., Gambino, R.J., Ruf, R.: Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys. Rev. Lett. 65, 247–250 (1990); Heinze, S., Bode, M., Kubetzka, A., Pietzsch, O., Nie, X., Blugel, S., Wiesendanger, R.: Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000); Wachowiak, A., Wiebe, J., Bode, M., Pietzsch, O., Morgenstern, M., Wiesendanger, R.: Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002); Wiesendanger, R.: Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009)Google Scholar
  37. 37.
    Heinrich, A.J., Gupta, J.A., Lutz, C.P., Eigler, D.M.: Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004)CrossRefGoogle Scholar
  38. 38.
    Hirjibehedin, C.F., Lutz, C.P., Heinrich, A.J.: Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006)CrossRefGoogle Scholar
  39. 39.
    Tsukahara, N., Noto, K.I., Ohara, M., Shiraki, S., Takagi, N., Takata, Y., Miyawaki, J., Taguchi, M., Chainani, A., Shin, S., Kawai, M.: Adsorption-induced switching of magnetic anisotropy in a single Iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009)CrossRefGoogle Scholar
  40. 40.
    Manassen, Y., Hamers, R.J., Demuth, J.E., Castellano, A.J.: Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531–2534 (1989); Manassen, Y., Terovanesyan, E., Shachal, D., Richter, S.: Electron-spin resonance-scanning tunneling microscopy experiments on thermally oxidized Si(111). Phys. Rev. B 48, 4887–4890 (1993); Komeda, T., Manassen, Y.: Distribution of frequencies of a single precessing spin detected by scanning tunneling microscope. Appl. Phys. Lett. 92, 212506 (2008); Sainoo, Y., Isshiki, H., Shahed, S.M.F., Takaoka, T., Komeda, T.: Atomically resolved Larmor frequency detection on Si(111)-7x7 oxide surface. Appl. Phys. Lett. 95, 082504 (2009)Google Scholar
  41. 41.
    Kondo, J.: Effect of ordinary scattering on exchange scattering from magnetic impurity in metals. Phys. Rev. 169, 437 (1968)CrossRefGoogle Scholar
  42. 42.
    Madhavan, V., Chen, W., Jamneala, T., Crommie, M.F., Wingreen, N.S.: Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998); Li, J.T., Schneider, W.D., Berndt, R., Delley, B.: Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998); Manoharan, H.C., Lutz, C.P., Eigler, D.M.: Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000); Knorr, N., Schneider, M.A., Diekhoer, L., Wahl, P., Kern, K.: Kondo effect of single Co adatoms on Cu surfaces. Phys. Rev. Lett. 88, 096804 (2002); Neel, N., Kroger, J., Limot, L., Palotas, K., Hofer, W.A., Berndt, R.: Conductance and Kondo effect in a controlled single-atom contact. Phys. Rev. Lett. 98, 016801 (2007); Iancu, V., Deshpande, A., Hla, S.W.: Manipulating Kondo temperature via single molecule switching. Nano Lett. 6, 820–823 (2006); Fu, Y.S., Ji, S.H., Chen, X., Ma, X.C., Wu, R., Wang, C.C., Duan, W.H., Qiu, X.H., Sun, B., Zhang, P., Jia, J.F., Xue, Q.K.: Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 99, 256601 (2007); Gao, L., Ji, W., Hu, Y.B., Cheng, Z.H., Deng, Z.T., Liu, Q., Jiang, N., Lin, X., Guo, W., Du, S.X., Hofer, W.A., Xie, X.C., Gao, H.J.: Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett. 99, 106402 (2007); Zhao, A.D., Hu, Z.P., Wang, B., Xiao, X.D., Yang, J.L., Hou, J.G.: Kondo effect in single cobalt phthalocyanine molecules adsorbed on Au(111) monoatomic steps. J. Chem. Phys. 128, 234705 (2008); Cho, S., Lim, J.M., Hiroto, S., Kim, P., Shinokubo, H., Osuka, A., Kim, D.: Unusual interchromophoric interactions in beta, beta. Directly and doubly linked corrole dimers: prohibited electronic communication and abnormal singlet ground states. J. Am. Chem. Soc. 131, 6412–6420 (2009); Wegner, D., Yamachika, R., Zhang, X., Wang, Y., Baruah, T., Pederson, M.R., Bartlett, B.M., Long, J.R., Crommie, M.F.: Tuning molecule-mediated spin coupling in bottom-up-fabricated vanadium-tetracyanoethylene nanostructures. Phys. Rev. Lett. 103, 087205 (2009); Li, Z., Li, B., Yang, J., Hou, J.G.: Single-molecule chemistry of metal phthalocyanine on noble metal surfaces. Acc. Chem. Res. 43, 954–962 (2010); Perera, U.G.E., Kulik, H.J., Iancu, V., da Silva, L., Ulloa, S.E., Marzari, N., Hla, S.W.: Spatially extended Kondo state in magnetic molecules induced by interfacial charge transfer. Phys. Rev. Lett. 105, 106601 (2010); Jiang, Y., Zhang, Y.N., Cao, J.X., Wu, R.Q., Ho, W.: Real-space imaging of Kondo screening in a two-dimensional O(2) lattice. Science 333, 324–328 (2011); Fu, Y.S., Xue, Q.K., Wiesendanger, R.: Spin-resolved splitting of Kondo resonances in the presence of RKKY-type coupling. Phys. Rev. Lett. 108, 087203 (2012); Stróecka, A., Soriano, M., Pascual, J.I., Palacios, J.J.: Reversible change of the spin state in a manganese phthalocyanine by coordination of CO molecule. Phys. Rev. Lett. 109, 147202 (2012); Kim, H., Chang, Y.H., Lee, S.-H., Kim, Y.-H., Kahng, S.-J.: Switching and sensing spin states of co-porphyrin in bimolecular reactions on Au(111) using scanning tunneling microscopy. ACS Nano 7, 9312–9317 (2013); Zhang, Y.H., Kahle, S., Herden, T., Stroh, C., Mayor, M., Schlickum, U., Ternes, M., Wahl, P., Kern, K.: Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nat. Comm. 4, 2110 (2013); Müllegger, S., Rashidi, M., Fattinger, M., Koch, R.: Surface-supported hydrocarbon Pi radicals show Kondo behavior. J. Phys. Chem. C 117, 5718–5721 (2013); Liu, J., Isshiki, H., Katoh, K., Morita, T., Breedlove, B.K., Yamashita, M., Komeda, T.: First observation of a Kondo resonance for a stable neutral pure organic radical, 1,3,5-Triphenyl-6-oxoverdazyl, adsorbed on the Au(111) surface. J. Am. Chem. Soc. 135, 651–658 (2013); Choi, T., Badal, M., Loth, S., Yoo, J.W., Lutz, C.P., Heinrich, A.J., Epstein, A.J., Stroud, D.G., Gupta, J.A.: Magnetism in single metalloorganic complexes formed by atom manipulation. Nano Lett. 14, 1196–1201 (2014)Google Scholar
  43. 43.
    Wahl, P., Diekhoner, L., Wittich, G., Vitali, L., Schneider, M.A., Kern, K.: Kondo effect of molecular complexes at surfaces: ligand control of the local spin coupling. Phys. Rev. Lett. 95, 166601 (2005)CrossRefGoogle Scholar
  44. 44.
    Iancu, V., Deshpande, A., Hla, S.W.: Manipulation of the Kondo effect via two-dimensional molecular assembly. Phys. Rev. Lett. 97, 266603 (2006)CrossRefGoogle Scholar
  45. 45.
    Fernandez-Torrente, I., Franke, K.J., Pascual, J.I.: Vibrational Kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett. 101, 217203 (2008); Choi, T., Bedwani, S., Rochefort, A., Chen, C.-Y., Epstein, A.J., Gupta, J.A.: A single molecule Kondo switch: multistability of tetracyanoethylene on Cu(111). Nano Lett. 10, 4175–4180 (2010)Google Scholar
  46. 46.
    Tsukahara, N., Shiraki, S., Itou, S., Ohta, N., Takagi, N., Kawai, M.: Evolution of Kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys. Rev. Lett. 106, 187201 (2011)CrossRefGoogle Scholar
  47. 47.
    Mugarza, A., Krull, C., Robles, R., Stepanow, S., Ceballos, G., Gambardella, P.: Spin coupling and relaxation inside molecule-metal contacts. Nat. Comm. 2, 490 (2011)CrossRefGoogle Scholar
  48. 48.
    DiLullo, A., Chang, S.-H., Baadji, N., Clark, K., Klöckner, J.-P., Prosenc, M.-H., Sanvito, S., Wiesendanger, R., Hoffmann, G., Hla, S.-W.: Molecular Kondo chain. Nano Lett. 12, 3174–3179 (2012)CrossRefGoogle Scholar
  49. 49.
    Minamitani, E., Tsukahara, N., Matsunaka, D., Kim, Y., Takagi, N., Kawai, M.: Symmetry-driven novel Kondo effect in a molecule. Phys. Rev. Lett. 109, 086602 (2012)CrossRefGoogle Scholar
  50. 50.
    Nagaoka, K., Jamneala, T., Grobis, M., Crommie, M.F.: Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002)CrossRefGoogle Scholar
  51. 51.
    Schlottmann, P.: Some exact results for dilute mixed-valent and heavy-fermion systems. Phys. Rep.-Rev. Sec. Phys. Lett. 181, 1–119 (1989); Hewson, A.C.: The Kondo Problem to Heavy Fermions. Cambridge University Press, London (1993)Google Scholar
  52. 52.
    Komeda, T., Isshiki, H., Liu, J., Zhang, Y.-F., Lorente, N., Katoh, K., Breedlove, B.K., Yamashita, M.: Observation and electric current control of a local spin in a single-molecule magnet. Nat Commun 2, 217 (2011)CrossRefGoogle Scholar
  53. 53.
    Vitali, L., Fabris, S., Conte, A.M., Brink, S., Ruben, M., Baroni, S., Kern, K.: Electronic structure of surface-supported Bis(phthalocyaninato) terbium(III) single molecular magnets. Nano Lett. 8, 3364–3368 (2008)CrossRefGoogle Scholar
  54. 54.
    Sasaki, S., De Franceschi, S., Elzerman, J.M., van der Wiel, W.G., Eto, M., Tarucha, S., Kouwenhoven, L.P.: Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 (2000); Paaske, J., Rosch, A., Wolfle, P., Mason, N., Marcus, C.M., Nygard, J.: Non-equilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat. Phys. 2, 460–464 (2006)Google Scholar
  55. 55.
    Auerhammer, J.M., Knupfer, M., Peisert, H., Fink, J.: The copper phthalocyanine/Au(100) interface studied using high resolution electron energy-loss spectroscopy. Surf. Sci. 506, 333–338 (2002)CrossRefGoogle Scholar
  56. 56.
    Qiu, X.H., Nazin, G.V., Ho, W.: Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004); Nazin, G.V., Wu, S.W., Ho, W.: Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope. Proc. Natl. Acad. Sci. U. S. A. 102, 8832–8837 (2005)Google Scholar
  57. 57.
    Aguiar-Hualde, J.M., Chiappe, G., Louis, E., Anda, E.V.: Kondo effect in transport through molecules adsorbed on metal surfaces: from Fano dips to Kondo peaks. Phys. Rev. B 76, 155427 (2007)CrossRefGoogle Scholar
  58. 58.
    Büsser, C.A., Moreo, A., Dagotto, E.: Conductance dip in the Kondo regime of linear arrays of quantum dots. Phys. Rev. B 70, 035402 (2004)CrossRefGoogle Scholar
  59. 59.
    Tsukahara, N., Minamitani, E., Kim, Y., Kawai, M., Takagi, N.: Controlling orbital-selective Kondo effects in a single molecule through coordination chemistry. J. Chem. Phys. 141, 054702 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations