Skip to main content

Cold-Adapted Basidiomycetous Yeasts as a Source of Biochemicals

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology

Abstract

Yeasts play a relevant role as starter cultures in traditional foods and beverages, as well as in innumerable biotechnological applications for obtaining high-value bulk and fine biochemicals. Despite a considerable number of studies on yeasts have been performed by using almost exclusively the species Saccharomyces cerevisiae (otherwise labeled as baker’s yeast), the number of yeast species described so far accounts for more than 1600, belonging to over 130 ascomycetous and basidiomycetous genera. This huge yeast diversity includes many non-Saccharomyces species possessing useful, and sometimes uncommon, metabolic features potentially interesting for both food and nonfood industries. Like other organisms, cold-adapted yeasts include species able to survive and grow in cold environments. They are usually labeled as psychrophiles or psychrotolerants on the basis of their cardinal growth temperatures. Among them, yeasts belonging to the phylum Basidiomycota apparently exhibit a superior adaptation to cold. This apparent superiority, which could be the result of some metabolic strategies implemented for adapting life to different thermal conditions in order to overcome the adverse effect of cold, can be considered worthwhile for implementing their biotechnological application at low temperatures. Accordingly, cold-adapted basidiomycetous yeasts have attracted considerable attention for their biotechnological potential, because they have developed the ability to synthesize cold-active enzymes, as well as other important biochemicals, namely, cryoprotectant compounds, polymers, lipids, and other miscellaneous compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alchihab M, Destain J, Aguedo M, Majad L, Ghalfi H, Wathelet JP, Thonart P (2009) Production of γ-decalactone by a psychrophilic and a mesophilic strain of the yeast Rhodotorula aurantiaca. Appl Biochem Biotechnol 158:41–50

    Article  CAS  PubMed  Google Scholar 

  • Alias N, Ahmad Mazian M, Salleh AB, Basri M, Rahman RN (2014) Molecular cloning and optimization for high level expression of cold-adapted serine protease from Antarctic yeast Glaciozyma antarctica PI12. Enzyme Res 2014:1–20

    Article  CAS  Google Scholar 

  • Alimardani-Theuil P, Gainvors-Claise A, Duchiron F (2011) Yeasts: an attractive source of pectinases – from gene expression to potential applications: a review. Proc Biochem 46:1525–1537

    Article  CAS  Google Scholar 

  • Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold- adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact 9:73–78

    PubMed  PubMed Central  Google Scholar 

  • Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday C, Marino G (2000) Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10:451–458

    Article  CAS  PubMed  Google Scholar 

  • Avis TJ, Bélanger RR (2001) Specificity and mode of action of the antifungal fattyacid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67:956–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot R, Labbé C, Belzile F, Bélanger RR (2005) The potential of Pseudozyma yeast like epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 69:304–311

    Article  CAS  PubMed  Google Scholar 

  • Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M (2016) Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles 20:479–491

    Article  CAS  PubMed  Google Scholar 

  • Behr A, Pérez Gomes J (2011) The cross-metathesis of methyl oleate with cis-2-butene-1,4-diyl diacetate and the influence of protecting groups. Beilstein Org Chem 7:1–8

    Article  CAS  Google Scholar 

  • Benesova E, Markova M, Kralova B (2005) a-Glucosidase and b-glucosidase from psychrotrophic strain Arthrobacter sp. C2–2. Czech J Food Sci 23:116–120

    CAS  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • BiaÅ‚kowska AM, Turkiewicz M (2014) Miscellaneous cold-active yeast enzymes of industrial importance. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 377–396

    Chapter  Google Scholar 

  • BiaÅ‚kowska AM, CieÅ›liÅ„ski H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835

    Article  PubMed  CAS  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer JH (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871

    Article  CAS  Google Scholar 

  • Birgisson HK, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    CAS  PubMed  Google Scholar 

  • Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483

    Article  CAS  PubMed  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  CAS  PubMed  Google Scholar 

  • Brandão LR, Libkind D, Vaz AB, Espírito Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  PubMed  CAS  Google Scholar 

  • Brizzio S, Turchetti B, de Garcìa V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities (EEA) of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Buzzini P, Margesin R (2014a) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg

    Book  Google Scholar 

  • Buzzini P, Margesin R (2014b) Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Buzzini P, Vaughan-Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 533–559

    Chapter  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Di Mauro S, Turchetti B (2017) Yeasts as starter cultures. In: Speranza B, Bevilacqua B, Corbo MR, Sinigaglia M (eds) Starter cultures in food production. Wiley, New York, pp 16–49

    Chapter  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  PubMed  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrasco M, Villarreal P, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2016) Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 19:16–21

    Google Scholar 

  • Chaud LC, Lario LD, Bonugli-Santos RC, Sette LD, Pessoa Junior A, Felipe MD (2016) Improvement in extracellular protease production by the marine Antarctic yeast Rhodotorula mucilaginosa L7. Nat Biotechnol 33:807–814

    CAS  Google Scholar 

  • Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–471

    Article  CAS  PubMed  Google Scholar 

  • Connell LB, Redman R, Craig S, Scorzetti G, Iszaard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  CAS  PubMed  Google Scholar 

  • De Mot R, Verachtert H (1987) Purification and characterization of extracellular a-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164:643–654

    Article  PubMed  Google Scholar 

  • Deegenaars ML, Watson K (1997) Stress proteins and stress tolerance in an Antarctic, psychrophilic yeast, Candida psychrophila. FEMS Microbiol Lett 151:191–196

    Article  CAS  PubMed  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat-shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova S, Pavlova K, Lukanov L, Zagorchev P (2010) Synthesis of coenzyme Q10 and beta-carotene by yeasts isolated from Antarctic soil and lichen in response to ultraviolet and visible radiations. Appl Biochem Biotechnol 162:795–804

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova S, Pavlova K, Lukanov L, Korotkova E, Petrova E, Zagorchev P, Kuncheva M (2013) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 169:301–311

    Article  CAS  PubMed  Google Scholar 

  • Dominguez de Maria P, Carboni-Oerlemans C, Tuin B, Bergeman G, Meer A, Gemert R (2005) Biotechnological applications of Candida antarctica lipase A: state-of-the-art. J Mol Catal B 37:36–46

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou J, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Emond S, Montanier C, Nicaud JM, Marty A, Monsan P, Andre I, Remaud-Simeon M (2010) New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl Environ Microbiol 76:2684–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericsson DJ, Kasrayan A, Johansson P, Berqfors T, Sandstrom AG, Bäckvall JE, Mowbray SL (2008) X-ray structure of Candida antarctica lipase B shows a novel lid structure and a likely mode of interfacial activation. J Mol Biol 376:109–119

    Article  CAS  PubMed  Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry. A textbook, 5th edn. Springer, Heidelberg

    Book  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Forde J, Vakurov A, Gibson TD, Millner P, Whelehan M, Marisin IW, Ó’Fágáin C (2010) Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Cat B 66:203–209

    Article  CAS  Google Scholar 

  • Galdino AS, Silva RN, Lottermann MT, Alvares AC, de Moraes LM, Torres FA, de Freitas SM, Ulhoa CJ (2011) Biochemical and structural characterization of amy1: an alpha-amylase from Cryptococcus flavus expressed in Saccharomyces cerevisiae. Enzyme Res 30:157294

    Google Scholar 

  • Garay LA, Sitepu IR, Cajka T, Chandra I, Shi S, Lin T, German JB, Fiehn O, Boundy-Mills KL (2016) Eighteen new oleaginous yeast species. J Ind Microbiol Biotechnol 43:887–900

    Article  CAS  PubMed  Google Scholar 

  • de García V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  CAS  Google Scholar 

  • de García V, Brizzio S, van Broock M (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550

    Article  PubMed  CAS  Google Scholar 

  • Gerday C (2014) Fundamentals of cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg

    Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trend Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235

    Article  CAS  PubMed  Google Scholar 

  • Gotor-Fernandéz V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812

    Article  CAS  Google Scholar 

  • Gruber CC, Pleiss J (2012) Lipase B from Candida antarctica binds to hydrophobic substrate–water interfaces via hydrophobic anchors surrounding the active site entrance. J Mol Catal B 84:48–54

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, PlemenitaÅ¡ A, Buzzini P (2014) Changes in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 3–22

    Google Scholar 

  • Gutarra MLE, Romero O, Abian O, Torres FAG, Freire DMG, Castro AM, Guisan JM, Palomo JM (2011) Enzyme surface glycosylation in the solid phase: improved activity and selectivity of Candida antarctica lipase B. Chem Cat Chem 3:1902–1910

    CAS  Google Scholar 

  • Habeych DI, Juhl PB, Pleiss J, Venegas D, Eggink G, Boeriu CG (2011) Biocatalytic synthesis of polyesters from sugar-based building blocks using immobilized Candida antarctica lipase B. J Mol Catal B 71:1–9

    Article  CAS  Google Scholar 

  • Hamid B, Singh P, Mohiddin FA, Sahay S (2013) Partial characterization of cold-active β-galactosidase activity produced by Cystophallobaidium capatitum SPY11 and Rodotorella musloganosa PT1. Endocytobiosis Cell Res 24:23–26

    Google Scholar 

  • Hashim NH, Bharudin I, Nguong DL, Higa S, Bakar FD, Nathan S, Rabu A, Kawahara H, Illias RM, Najimudin N, Mahadi NM, Murad AM (2013) Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17:63–73

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510

    Article  CAS  PubMed  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 347–363

    Chapter  Google Scholar 

  • Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. ASRJETS 23:2313–4410

    Google Scholar 

  • Jiru TM, Abate D, Kiggundu N, Pohl C, Groenewald M (2016) Oleaginous yeasts from Ethiopia. AMB Express 6:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 21–44

    Chapter  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Juhl PB, Doderer K, Hollmann F, Thum O, Pleiss J (2010) Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol 150:474–480

    Article  CAS  PubMed  Google Scholar 

  • Kahveci D, Xu X (2012) Bioimprinted immobilization of Candida antarctica lipase A for concentration of omega-3 polyunsaturated fatty acids. J Am Oil Chem Soc 89:1839–1845

    Article  CAS  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99:9727–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasová-Lipovová P, Strnad H, Spiwok V, Spiwok V, Malá S, Králová B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active b-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2–2. Enzyme Microb Technol 33:836–844

    Article  CAS  Google Scholar 

  • Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol 51:572–579

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H (2008) Cryoprotectants and ice-binding proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 229–246

    Chapter  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    Article  CAS  Google Scholar 

  • Krishna H, Persson MM, Bornscheuer UT (2002) Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron Asymmetry 13:2693–2696

    Article  Google Scholar 

  • Kuddus M, Roohi Arif JM, Ramteke PW (2011) An overview of cold-active microbial a-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258

    Article  CAS  Google Scholar 

  • Kuncheva M, Panchev I, Pavlova K, Rusinova-Videva S, Georgieva K, Dimitrova S (2013) Production and characterisation of exopolysaccharide by Antarctic yeast strain Cryptococcus laurentii AL62. Biotechnol Biotechnol Equip 27:4098–4102

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011a) The yeasts. A taxonomy study, vol 1–3. Elsevier, New York

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011b) Definition, classification and nomenclature of the yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 3–5

    Chapter  Google Scholar 

  • Lachance MA (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 1–9

    Google Scholar 

  • Lario LD, Chaud L, Md A, Converti A, Sette LD, Pessoa A Jr (2015) Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol 119:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Koh HY, Lee JH, Kang SH, Kim HJ (2012) Cryopreservative effects of the recombinant ice-binding protein from the Arctic yeast Leucosporidium sp. on red blood cells. Appl Biochem Biotechnol 167:824–834

    Article  CAS  PubMed  Google Scholar 

  • Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym Microb Technol 39:824–827

    Article  CAS  Google Scholar 

  • Liese A, Weelbach K, Wandrey C (2000) Industrial biotransformations, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov A, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1665–1673

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    Article  CAS  PubMed  Google Scholar 

  • Miletić N, Loos K (2009) Over-stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides. Aust J Chem 62:799–805

    Article  CAS  Google Scholar 

  • Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, Murad AM (2016) Structure prediction of a novel exo-β-1,3-glucanase: insights into the cold adaptation of psychrophilic yeast Glaciozyma antarctica PI12. Interdiscip Sci Comput Life Sci. doi:10.1007/s12539-016-0180-9

    Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005a) Cold-active polygalacturonase from psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biosci Biotechnol Biochem 69:419–421

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005b) A cold-active pectin lyase from the psychrophilic and basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biotechnol Appl Biochem 42:193–196

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M (2006) Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Article  CAS  PubMed  Google Scholar 

  • Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Chen XL, Shun CY, He HL, Zhang YZ (2005) Stabilization of cold-adapted protease MCP-01 promoted by trehalose: prevention of the autolysis. Protein Pept Lett 12:375–378

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Do H, Lee JH, Park SI, Ej K, Kim SJ, Kang SH, Kim HJ (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64:286–296

    Article  CAS  PubMed  Google Scholar 

  • Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM (2015) Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma Antarctica PI12 and its temperature adaptation analysis. J Mol Model 21:63

    Article  PubMed  CAS  Google Scholar 

  • Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM (2016) The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. J Biomol Struct Dyn 5:1–8

    Google Scholar 

  • Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325

    CAS  Google Scholar 

  • Patkar SA, Björkling F, Zundel M, Schulein M, Svendsen A, Heldt-Hansen HP, Gormsen E (1993) Purification of two lipases from Candida antarctica and their inhibition by various inhibitors. Ind J Chem Sect B 32:76–80

    Google Scholar 

  • Pavlova K (2014) Production of polymers and other compounds of industrial importance by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 397–416

    Chapter  Google Scholar 

  • Pavlova K, Angelova G, Savova I, Grigorova D, Kupenov L (2002) Studies of Antarctic yeast for b-glucosidase production. World J Microbiol Biotechnol 18:569–573

    Article  CAS  Google Scholar 

  • Pavlova K, Panchev I, Krachanova M, Gocheva M (2009) Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol 54:343–348

    Article  CAS  Google Scholar 

  • Pazgier M, Turkiewicz M, Kalinowska H, Bielecki S (2003) The unique cold-adapted extracellular subtilase from psychrophilic yeast Leucosporidium antarcticum. J Mol Catal B Enzym 21:39–42

    Article  CAS  Google Scholar 

  • Pereyra V, Martinez A, Rufo C, Vero S (2014) Oleaginous yeasts form Uruguay and Antarctica as renewable raw material for biodiesel production. Am J Biosci 2:251–257

    Article  CAS  Google Scholar 

  • Perez J, Munoz-Dorado J, Rubia T, Martinez J (2002) Bio-degradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  CAS  PubMed  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa J-P, Ntarima P, Clayessens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  CAS  PubMed  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:1–12

    Article  Google Scholar 

  • Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casaburi A, Nicolaus B (2010) Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL1 isolated from Livingston Island, Antarctica. Folia Microbiol 55:576–581

    Article  CAS  Google Scholar 

  • Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 4:10–94

    Google Scholar 

  • Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961

    Article  CAS  PubMed  Google Scholar 

  • Rashid FAA, Rahim RA, Ibrahim D (2010) Identification of lipase-producing psychrophilic yeast, Leucosporidium sp. Internet J Microbiol 9(1). doi:10.5580/1215

  • Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372

    Article  CAS  PubMed  Google Scholar 

  • Rovati JI, Pajot HF, Ruberto L, Mac Cormack W, Figueroa LI (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470

    Article  CAS  PubMed  Google Scholar 

  • Rusinova-Videva S, Pavlova K, Georgieva K (2011) Effect of different carbon sources on biosynthesis of exopolysaccharide from Antarctic strain Cryptococcus. Biotechnol Biotechnol Equip 23:888–891

    Article  Google Scholar 

  • Sahay S, Hamid B, Singh P, Ranjan K, Chauhan D, Rana RS, Chaurse VK (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 57:115–121

    Article  CAS  PubMed  Google Scholar 

  • Santiago M, Ramìrez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408. doi:10.3389/fmicb.2016.01408

    PubMed  PubMed Central  Google Scholar 

  • Schulze I, Hansen S, Großhans S, Rudszuck T, Ochsenreither K, Syldatk C, Neumann A (2014) Characterization of newly isolated oleaginous yeasts – Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express 4:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie Van Leeuwenhoek 77:153–157

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 b galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Sibirny AA, Scheffers L (2002) Thematic section biochemistry, genetics, biotechnology and ecology of non-conventional yeasts. FEMS Yeast Res 2:293

    Google Scholar 

  • Singh P, Singh MV, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ã…lesund, Arctic. Cryobiology 68:122–128

    Article  CAS  PubMed  Google Scholar 

  • Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360

    Article  CAS  PubMed  Google Scholar 

  • Song C, Chi Z, Li J, Wang X (2010) β-Galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17–1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess Biosyst Eng 33:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 65–83

    Chapter  Google Scholar 

  • Szczesna-Antczak M, Kaminska J, Florczak T, Turkiewicz M (2014) Cold-active yeast lipases: recent issues and future prospects. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg

    Google Scholar 

  • Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase by Candida lipolytica. Argic Biol Chem 40:1087–1092

    CAS  Google Scholar 

  • Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013a) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8:e59376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T (2013b) Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 67:241–243

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Yokota Y, Kudoh S, Hoshino T (2014) Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition. Cryobiology 68:303–305

    Article  CAS  PubMed  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  CAS  PubMed  Google Scholar 

  • Turchetti B, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Onofri A, Buzzini P (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 86:327–340

    Article  CAS  PubMed  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  CAS  PubMed  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and a-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136

    Google Scholar 

  • Vlaev S, Rusinova-Videva S, Pavlova K, Kuncheva M, Panchev I, Dobreva S (2013) Submerged culture process for biomass and exopolysaccharide production by Antarctic yeast: some engineering considerations. Appl Microbiol Biotechnol 97:5303–5313

    Article  CAS  PubMed  Google Scholar 

  • Wang QM, Groenewald M, Takashima M, Theelen B, Han PJ, Liu T, Boekhout T, Bai FY (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang QM, Yurkov A, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–289

    Article  PubMed  Google Scholar 

  • Yu P, Wang XT, Liu JW (2015) Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. J Basic Microbiol 55:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Zaliha RN, Salleh AB, Basri M, Mohamad Ali MSB (2012) Cold active enzyme and method thereof. US Patent 2012/0058514 A1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Buzzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tasselli, G., Filippucci, S., Sannino, C., Turchetti, B., Buzzini, P. (2017). Cold-Adapted Basidiomycetous Yeasts as a Source of Biochemicals. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_24

Download citation

Publish with us

Policies and ethics