Skip to main content

Mechanical Properties of High-Energy Ball Milled Nanocrystalline Al Alloys

  • Chapter
  • First Online:
An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Nanocrystalline metallic materials [1–3] produced by the high-energy ball milling (HEBM) [4] are reported to be much stronger and apparently less ductile than conventional coarse grained materials. This difference in the properties is attributed to the unique grain structure, defects, defect activity and the arrangement of such features in nanocrystalline materials. For example, a paucity of dislocations in nanocrystalline materials is well documented. Dislocation pile-up in deformed specimen has not been reported so far and any dislocation activity is primarily believed to originate and terminate at grain boundaries. Due to the fine grain size, grain boundary sliding and/or Coble creep can dominate deformation, which may cause softening. Various aspects of mechanical properties of nanocrystalline materials produced via several processing routes are discussed in the literature. This chapter is focused on mechanical properties of nanocrystalline Al alloys as prepared by HEBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  Google Scholar 

  2. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  3. Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6:3–14

    Article  Google Scholar 

  4. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  5. Bonetti E, Pasquini L, Sampaolesi E (1997) The influence of grain size on the mechanical properties of nanocrystalline aluminium. Nanostruct Mater 9:611–614

    Article  Google Scholar 

  6. Zakeri M, Vakili-Ahrarirudi A (2012) Effect of milling speed and shaping method on mechanical properties of nanostructure bulked aluminum. Mater Des 37:487–490

    Article  Google Scholar 

  7. Cintas J, Montes JM, Cuevas FG, Herrera EJ (2005) Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J Mater Sci 40:3911–3915

    Article  Google Scholar 

  8. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302

    Article  Google Scholar 

  9. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256

    Article  Google Scholar 

  10. Newbery AP, Ahn B, Topping TD, Pao PS, Nutt SR, Lavernia EJ (2008) Large UFG Al alloy plates from cryomilling. J Mater Process Technol 203:37–45

    Article  Google Scholar 

  11. Tellkamp VL, Lavernia EJ (1999) Processing and mechanical properties of nanocrystalline 5083 Al alloy. Nanostruct Mater 12:249–252

    Article  Google Scholar 

  12. Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al-Cu alloy. Mater Sci Eng A 527:7821–7825

    Article  Google Scholar 

  13. Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical alloying and vacuum hot pressing. Metall Mater Trans A Phys Metall Mater Sci 40:2798–2801

    Article  Google Scholar 

  14. Srinivasarao B, Suryanarayana C, Oh-ishi K, Hono K (2009) Microstructure and mechanical properties of Al-Zr nanocomposite materials. Mater Sci Eng A 518:100–107

    Article  Google Scholar 

  15. Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538

    Article  Google Scholar 

  16. Sasaki TT, Mukai T, Hono K (2007) A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scr Mater 57:189–192

    Article  Google Scholar 

  17. Cavaliere P (2007) Strain rate sensitivity and fatigue properties of an Al-fe nanocrystalline alloy produced by cryogenic ball milling. Multidiscip Model Mater Struct 3:225–234

    Article  Google Scholar 

  18. Mendis CL, Jhawar HP, Sasaki TT, Oh-ishi K, Sivaprasad K, Fleury E, Hono K (2012) Mechanical properties and microstructures of Al-1Fe-(0-1)Zr bulk nano-crystalline alloy processed by mechanical alloying and spark plasma sintering. Mater Sci Eng A 541:152–158

    Article  Google Scholar 

  19. Ryu JR, Moon KI, Lee KS (2000) Microstructure and mechanical properties of nanocrystalline Al-Ti alloys consolidated by plasma activated sintering. J Alloys Compd 296:157–165

    Article  Google Scholar 

  20. Rana JK, Sivaprahasam D, Seetharama Raju K, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering. Mater Sci Eng A 527:292–296

    Article  Google Scholar 

  21. Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155

    Article  Google Scholar 

  22. Polukhin P, Gorelik S, Vorontsov V (1984) Physical principles ofplastic deformation. Mir Publisher, Moscow

    Google Scholar 

  23. Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643–650

    Article  Google Scholar 

  24. Gupta RK, Fabijanic D, Dorin T, Qiu Y, Wang JT, Birbilis N (2015) Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Mater Des 84:270–276

    Article  Google Scholar 

  25. Han BQ, Lavernia EJ, Mohamed FA (2003) Tension and compression behaviours of bulk ultrafine-grained Al-7.5 wt% Mg alloy. Philos Mag Lett 83:89–96

    Article  Google Scholar 

  26. Han BQ, Lavernia EJ, Mohamed FA (2003) On the mechanical behavior of a cryomilled Al-Ti-Cu alloy. Mater Sci Eng A 358:318–323

    Article  Google Scholar 

  27. Han BQ, Lavernia EJ, Mohamed FA (2005) Mechanical properties of nanostructured materials. Rev Adv Mater Sci 9:1–16

    Google Scholar 

  28. Han BQ, Matejczyk D, Zhou F, Zhang Z, Bampton C, Lavernia EJ, Mohamed FA (2004) Mechanical behavior of a cryomilled nanostructured Al-7.5 pct Mg alloy. Metall Mater Trans A Phys Metall Mater Sci 35A:947–949

    Article  Google Scholar 

  29. Han BQ, Mohamed FA, Bampton CC, Lavernia EJ (2005) Improvement of toughness and ductility of a cryomilled Al-Mg alloy via microstructural modification. Metall Mater Trans A Phys Metall Mater Sci 36:2081–2091

    Article  Google Scholar 

  30. Han BQ, Mohamed FA, Lavernia EJ (2003) Tensile behavior of bulk nanostructured and ultrafine grained aluminum alloys. J Mater Sci 38:3319–3324

    Article  Google Scholar 

  31. Han BQ, Mohamed FA, Lavernia EJ (2004) Deformation mechanisms and ductility of nanostructured Al alloys. MRS Proceed 821:263–268

    Google Scholar 

  32. Shaw LL, Luo H (2007) Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy. J Mater Sci 42:1415–1426

    Article  Google Scholar 

  33. Moon KI, Park HS, Lee KS (2002) Consolidation of nanocrystalline Al-5 at.% Ti alloy powders by ultra high-pressure hot pressing. Mater Sci Eng A 323:293–300

    Article  Google Scholar 

  34. Lee Z, Zhou F, Valiev RZ, Lavernia EJ, Nutt SR (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scr Mater 51:209–214

    Article  Google Scholar 

  35. Pradeep KG, Wanderka N, Choi P, Banhart J, Murty BS, Raabe D (2013) Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater 61:4696–4706

    Article  Google Scholar 

  36. Roshan MR, Soltanpour M, Jahromi SAJ (2013) Microstructural evolution of nanocrystalline chips particles produced via large strain machining during ball milling. Powder Technol 249:134–139

    Article  Google Scholar 

  37. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging. Nanostruct Mater 10:691–698

    Article  Google Scholar 

  38. Shaw L, Luo H, Villegas J, Miracle D (2004) Effects of internal strains on hardness of nanocrystalline Al-Fe-Cr-Ti alloys. Scr Mater 51:449–453

    Article  Google Scholar 

  39. Azabou M, Khitouni M, Kolsi A (2009) Characterization of nanocrystalline Al-based alloy produced by mechanical milling followed by cold-pressing consolidation. Mater Charact 60:499–505

    Article  Google Scholar 

  40. Akinrinlola B, Gauvin R, Brochu M (2012) Improving the mechanical reliability of cryomilled Al-Mg alloy using a two-stage spark plasma sintering cycle. Scr Mater 66:455–458

    Article  Google Scholar 

  41. Varam S, Narayana PVSL, Prasad MD, Chakravarty D, Rajulapati KV, Bhanu Sankara Rao K (2014) Strain rate sensitivity of bulk multi-phase nanocrystalline Al-W-based alloy. Philos Mag Lett 94:582–591

    Article  Google Scholar 

  42. Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A Phys Metall Mater Sci 32:2335–2343

    Article  Google Scholar 

  43. Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng A 483–484:102–104

    Article  Google Scholar 

  44. Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60

    Article  Google Scholar 

  45. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  46. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  47. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater 53:1–40

    Article  Google Scholar 

  48. Weertman JR, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, Van Swygenhoven H (1999) Structure and mechanical behavior of bulk nanocrystalline materials. MRS Bull 24:44–50

    Article  Google Scholar 

  49. Padmanabhan KA, Gleiter H (2012) A mechanism for the deformation of disordered states of matter. Curr Opin Solid State Mater Sci 16:243–253

    Article  Google Scholar 

  50. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, New York

    Google Scholar 

  51. Cahn RW, Haasen P (1997) Physical metallurgy. North-Holland, Amsterdam

    Google Scholar 

  52. Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52:4259

    Article  Google Scholar 

  53. Lloyd DJ, Court SA (2003) Influence of grain size on tensile properties of Al-Mg alloys. Mater Sci Tech 19:1349

    Article  Google Scholar 

  54. Wu D, Zhang J, Huang JC, Bei H, Nieh TG (2013) Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals. Scr Mater 68:118–121

    Article  Google Scholar 

  55. Scattergood RO, Koch CC (1992) A modified model for hall-petch behavior in nanocrystalline materials. Scr Metall Mater 27:1195–1200

    Article  Google Scholar 

  56. Wang N, Wang Z, Aust KT, Erb U (1995) Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall Mater 43:519–528

    Article  Google Scholar 

  57. Jang JSC, Koch CC (1990) The hall-petch relationship in nanocrystalline iron produced by ball milling. Scr Metall Mater 24:1599–1604

    Article  Google Scholar 

  58. Chen Z, Jiang S, Gan Y (2012) The “Inverse Hall-Petch” effect on the impact response of single crystal copper. Acta Mech Sinica/Lixue Xuebao 28:1042–1048

    Article  Google Scholar 

  59. Tang Y, Bringa EM, Meyers MA (2013) Inverse Hall-Petch relationship in nanocrystalline tantalum. Mater Sci EngA 580:414–426

    Article  Google Scholar 

  60. Hahn H, Mondal P, Padmanabhan KA (1997) Plastic deformation of nanocrystalline materials. Nanostruct Mater 9:603–606

    Article  Google Scholar 

  61. Carlton CE, Ferreira PJ (2007) What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater 55:3749–3756

    Article  Google Scholar 

  62. Cao Z, Meng X (2012) Inverse hall-petch effect of hardness in nanocrystalline ta films. Adv Mater Res 378–379:575–579

    Google Scholar 

  63. Takeuchi S (2001) The mechanism of the inverse Hall-Petch relation of nanocrystals. Scr Mater 44:1483–1487

    Article  Google Scholar 

  64. Koch CC, Scattergood RO, Youssef KM, Chan E, Zhu YT (2010) Nanostructured materials by mechanical alloying: new results on property enhancement. J Mater Sci 45:4725–4732

    Article  Google Scholar 

  65. Sanders PG, Youngdahl CJ, Weertman JR (1997) The strength of nanocrystalline metals with and without flaws. Mater Sci Eng A 234–236:77–82

    Article  Google Scholar 

  66. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  Google Scholar 

  67. Koch CC, Morris DG, Lu K, Inoue A (1999) Ductility of nanostructured materials. MRS Bull 24:54–58

    Article  Google Scholar 

  68. Darling KA, Roberts AJ, Armstrong L, Kapoor D, Tschopp MA, Kecskes LJ, Mathaudhu SN (2013) Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys. Mater Sci Eng A 589:57–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Gupta, R.K., Murty, B.S., Birbilis, N. (2017). Mechanical Properties of High-Energy Ball Milled Nanocrystalline Al Alloys. In: An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-57031-0_4

Download citation

Publish with us

Policies and ethics