Skip to main content

High-Energy Ball Milling Parameters in Production of Nanocrystalline Al Alloys

  • Chapter
  • First Online:
An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Alloying of elemental blends achieved through high-energy ball milling (HEBM) is referred to as mechanical alloying (MA), which is a solid-state powder processing technique involving the repeated deformation, fracture and welding of powder particles [1–4]. This technique was originally developed to produce oxide-dispersion strengthened (ODS) nickel and iron-base superalloys for aerospace applications [5]. Later, MA has been substantiated to be capable of synthesizing a variety of equilibrium and non-equilibrium phases, including nanocrystalline and amorphous materials. Recently MA has been demonstrated to be a most versatile and economical process for synthesis of nanocrystalline materials, due to its simplicity, low cost, and ability to produce large amount of material [1–4, 6]. Historically, from the point of Al based alloys, MA was used to produce dispersion hardened Al alloys [7–9]. Commercial production of Al alloys by ball milling was first reported by INCO alloys in year 1989 [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  2. Zhang DL (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49:537–560

    Article  Google Scholar 

  3. Pabi SK, Manna I, Murty BS (1999) Alloying behaviour in nanocrystalline materials during mechanical alloying. Bull Mater Sci 22:321–327

    Article  Google Scholar 

  4. Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21:433–446

    Article  Google Scholar 

  5. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1:2943–2951

    Google Scholar 

  6. Zdujić M, Poleti D, Karanović L, Kobayashi KF, Shingu PH (1994) Intermetallic phases produced by the heat treatment of mechanically alloyed AlMo powders. Mater Sci Eng A 185:77–86

    Article  Google Scholar 

  7. Benjamin JS, Bomford MJ (1977) Dispersion strengthened aluminium made by mechanical alloying. Metall Trans A 8A:1302–1305

    Google Scholar 

  8. Singer RF, Oliver WC, Nix WD (1980) Identification of dispersoid phases created in aluminum during mechanical alloying. Metall Trans A 11:1895–1901

    Article  Google Scholar 

  9. Hansen N (1969) Microsrructure and flow stress of aluminium and sipersion strengthened aluminium aluminium-oxide products drawn at room temperature. Metall Soc AIME Trans 245:2061–2068

    Google Scholar 

  10. Inco Alloys I (1989) Mechanical alloying for high performance aluminium alloys. Mater Des 10:38

    Article  Google Scholar 

  11. Fecht HJ (1995) Nanostructure formation by mechanical attrition. Nanostruct Mater 6:33–42

    Article  Google Scholar 

  12. Xun Y, Lavernia EJ, Mohamed FA (2004) Synthesis of nanocrystalline Zn-22 pct Al using cryomilling. Metall Mater Trans A Phys Metall Mater Sci 35A:573–581

    Article  Google Scholar 

  13. Murty BS, Mohan Rao M, Ranganathan S (1995) Milling maps and amorphization during mechanical alloying. Acta Metall Mater 43:2443–2450

    Article  Google Scholar 

  14. Murty BS, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43:101–141

    Article  Google Scholar 

  15. Burmeister CF, Kwade A (2013) Process engineering with planetary ball mills. Chem Soc Rev 42:7660–7667

    Article  Google Scholar 

  16. Eckert J, Holzer Iii JC, Krill CE, Johnson WL (1992) Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J Mater Res 7:1751–1761

    Article  Google Scholar 

  17. Oleszak D, Shingu PH (1996) Nanocrystalline metals prepared by low energy ball milling. J Appl Phys 79:2975–2980

    Article  Google Scholar 

  18. Molinari A, Lonardelli I, Demetrio K, Menapace C (2010) Effect of the particle size on the thermal stability of nanostructured aluminum powder: dislocation density and second-phase particles controlling the grain growth. J Mater Sci 45:6739–6746

    Article  Google Scholar 

  19. Zhou F, Witkin D, Nutt SR, Lavernia EJ (2004) Formation of nanostructure in Al produced by a low-energy ball milling at cryogenic temperature. Mater Sci Eng A 375–377:917–921

    Article  Google Scholar 

  20. Zhou F, Lee J, Lavernia EJ (2001) Grain growth kinetics of a mechanically milled nanocrystalline Al. Scr Mater 44:2013–2017

    Article  Google Scholar 

  21. Mhadhbi M, Khitouni M, Azabou M, Kolsi A (2008) Characterization of Al and Fe nanosized powders synthesized by high energy mechanical milling. Mater Charact 59:944–950

    Article  Google Scholar 

  22. Bonetti E, Pasquini L, Sampaolesi E (1997) The influence of grain size on the mechanical properties of nanocrystalline aluminium. Nanostruct Mater 9:611–614

    Article  Google Scholar 

  23. Zakeri M, Vakili-Ahrarirudi A (2012) Effect of milling speed and shaping method on mechanical properties of nanostructure bulked aluminum. Mater Des 37:487–490

    Article  Google Scholar 

  24. Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643

    Article  Google Scholar 

  25. Roshan MR, Soltanpour M, Jahromi SAJ (2013) Microstructural evolution of nanocrystalline chips particles produced via large strain machining during ball milling. Powder Technol 249:134–139

    Article  Google Scholar 

  26. Rana JK, Sivaprahasam D, Seetharama Raju K, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering. Mater Sci Eng A 527:292–296

    Article  Google Scholar 

  27. Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al-Cu alloy. Mater Sci Eng A 527:7821–7825

    Article  Google Scholar 

  28. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256

    Article  Google Scholar 

  29. Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater 51:2777–2791

    Article  Google Scholar 

  30. Park YS, Chung KH, Kim NJ, Lavernia EJ (2004) Microstructural investigation of nanocrystalline bulk Al-Mg alloy fabricated by cryomilling and extrusion. Mater Sci Eng A 374:211–216

    Article  Google Scholar 

  31. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302

    Article  Google Scholar 

  32. Lee Z, Zhou F, Valiev RZ, Lavernia EJ, Nutt SR (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scr Mater 51:209–214

    Article  Google Scholar 

  33. Calka A, Radlinski AP (1991) Universal high performance ball-milling device and its application for mechanical alloying. Mater Sci Eng A 134:1350–1353

    Article  Google Scholar 

  34. Calka A, Kaczmarek W, Williams JS (1993) Extended solid solubility in ball-milled Al-Mg alloys. J Mater Sci 28:15–18

    Article  Google Scholar 

  35. Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical alloying and vacuum hot pressing. Metall Mater Trans A Phys Metall Mater Sci 40:2798–2801

    Article  Google Scholar 

  36. Choi JH, Moon KI, Kim JK, Oh YM, Suh JH, Kim SJ (2001) Consolidation behavior of nanocrystalline Al-5at.%Ti alloys synthesized by cryogenic milling. J Alloys Compd 315:178–186

    Article  Google Scholar 

  37. Moon KI, Park HS, Lee KS (2002) Consolidation of nanocrystalline Al-5 at.% Ti alloy powders by ultra high-pressure hot pressing. Mater Sci Eng A 323:293–300

    Article  Google Scholar 

  38. Ryu JR, Moon KI, Lee KS (2000) Microstructure and mechanical properties of nanocrystalline Al-Ti alloys consolidated by plasma activated sintering. J Alloys Compd 296:157–165

    Article  Google Scholar 

  39. Guoxian L, Zhichao L, Erde W (1995) Grain growth behaviour of mechanically alloyed Al-10Ti nanocrystalline alloy during consolidation process. J Mater Sci Lett 14:533–535

    Article  Google Scholar 

  40. Rajulapati KV, Scattergood RO, Murty KL, Duscher G, Koch CC (2006) Effect of Pb on the mechanical properties of nanocrystalline Al. Scr Mater 55:155–158

    Article  Google Scholar 

  41. Rajulapati KV, Scattergood RO, Murty KL, Horita Z, Langdon TG, Koch CC (2008) Mechanical properties of bulk nanocrystalline aluminum-tungsten alloys. Metall Mater Trans A Phys Metall Mater Sci 39:2528–2534

    Article  Google Scholar 

  42. Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538

    Article  Google Scholar 

  43. Mukhopadhyay DK, Suryanarayana C, Froes FH (1995) Structural evolution in mechanically alloyed Al-Fe powders. Metall Mater Trans A 26:1939–1946

    Article  Google Scholar 

  44. Mendis CL, Jhawar HP, Sasaki TT, Oh-ishi K, Sivaprasad K, Fleury E, Hono K (2012) Mechanical properties and microstructures of Al-1Fe-(0-1)Zr bulk nano-crystalline alloy processed by mechanical alloying and spark plasma sintering. Mater Sci Eng A 541:152–158

    Article  Google Scholar 

  45. Shaikh MA, Iqbal M, Akhter JI, Ahmad M, Zaman Q, Akhtar M, Moughal MJ, Ahmed Z, Farooque M (2003) Alloying of immiscible Ge with Al by ball milling. Mater Lett 57:3681–3685

    Article  Google Scholar 

  46. Bhaduri A, Gopinathan V, Ramakrishnan P, Miodownik AP (1996) Microstructural changes in a mechanically alloyed Al-6.2Zn-2.5Mg-1.7 Cu alloy (7010) with and without particulate SiC reinforcement. Metall Mater Trans A Phys Metall Mater Sci 27:3718–3726

    Article  Google Scholar 

  47. Srinivasarao B, Suryanarayana C, Oh-ishi K, Hono K (2009) Microstructure and mechanical properties of Al-Zr nanocomposite materials. Mater Sci Eng A 518:100–107

    Article  Google Scholar 

  48. Azabou M, Khitouni M, Kolsi A (2009) Characterization of nanocrystalline Al-based alloy produced by mechanical milling followed by cold-pressing consolidation. Mater Charact 60:499–505

    Article  Google Scholar 

  49. Shaw L, Luo H, Villegas J, Miracle D (2004) Effects of internal strains on hardness of nanocrystalline Al-Fe-Cr-Ti alloys. Scr Mater 51:449–453

    Article  Google Scholar 

  50. Shaw LL, Luo H (2007) Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy. J Mater Sci 42:1415–1426

    Article  Google Scholar 

  51. Pradeep KG, Wanderka N, Choi P, Banhart J, Murty BS, Raabe D (2013) Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater 61:4696–4706

    Article  Google Scholar 

  52. Milligan J, Vintila R, Brochu M (2009) Nanocrystalline eutectic Al-Si alloy produced by cryomilling. Mater Sci Eng A 508:43–49

    Article  Google Scholar 

  53. Suryanarayana C (1998) Powder metal technologies and applications, ASM handbook, vol 7. ASM International, Materials Park, OH, pp 80–90

    Google Scholar 

  54. Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22

    Article  Google Scholar 

  55. Fan GJ, Gao WN, Quan MX, Hu ZQ (1995) Preparation and thermal stability of supersaturated nanocrystalline Al-Ti alloys. Mater Lett 23:33–37

    Article  Google Scholar 

  56. Gupta RK (2015) Corrosion resistance and mechanical properties of high-energy ball milled Al and Al alloys. Research in progress symposim on corrosion of light metals, NACE Corrosion, Dallas, TX, March

    Google Scholar 

  57. Cintas J, Montes JM, Cuevas FG, Herrera EJ (2005) Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J Mater Sci 40:3911–3915

    Article  Google Scholar 

  58. Mo L, Lu L (1998) Mechanical alloying. Kluwer Academic, Boston, MA

    Google Scholar 

  59. Atzmon M (1990) In situ thermal observation of explosive compound-formation reaction during mechanical alloying. Phys Rev Lett 64:487

    Article  Google Scholar 

  60. Takacs L, Pardavi-Horvath M (1994) Nanocomposite formation in the Fe3O4-Zn system by reaction milling. J Appl Phys 75:5864–5866

    Article  Google Scholar 

  61. Zhao KY, Li CJ, Tao JM, Ng DHL, Zhu XK (2010) The synthesis, microstructure, hardness and thermal properties of bulk nanocrystalline Al produced by in situ consolidation with low-energy ball milling. J Alloys Compd 504:S306–S310

    Article  Google Scholar 

  62. Kim SH, Kim YJ, Ahn JH (2012) Surface hardening of Al alloys through controlled ball-milling and sintering. J Nanosci Nanotechnol 12:5514–5518

    Article  Google Scholar 

  63. Takacs L, McHenry JS (2006) Temperature of the milling balls in shaker and planetary mills. J Mater Sci 41:5246–5249

    Article  Google Scholar 

  64. Mio H, Kano J, Saito F, Kaneko K (2002) Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Mater Sci Eng A 332:75–80

    Article  Google Scholar 

  65. Mio H, Kano J, Saito F (2004) Scale-up method of planetary ball mill. Chem Eng Sci 59:5909–5916

    Article  Google Scholar 

  66. Hayes RW, Berbon PB, Mishra RS (2004) Microstructure characterization creep deformation of an Al-10 Wt Pct Ti-2 Wt Pct Cu nanocomposite. Metall Mater Trans A Phys Metall Mater Sci 35A:3855–3861

    Article  Google Scholar 

  67. Miki M, Yamasaki T, Ogino Y (1995) Preparation of (Al, Ti)N by mechanical alloying of Al-Ti powder mixtures under nitrogen atmosphere. Mater Sci Forum 179–181:307–312

    Article  Google Scholar 

  68. Tang F, Gianola DS, Moody MP, Hemker KJ, Cairney JM (2012) Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Mater 60:1038–1047

    Article  Google Scholar 

  69. Ebnalwaled AA, Abou Zied M (2013) Milling time – dependent microstructure and mechanical properties of nanostructured Al-Si alloy. Int J Mod Phys B 27:1350036

    Article  Google Scholar 

  70. Kim Y-W, Griffith WM, Froes FH (1985) Surface oxides in P/M aluminium alloys. J Metals 37:27–33

    Google Scholar 

  71. Roshan MR, Mirzaei M, Jahromi SAJ (2013) Microstructural characteristics and tensile properties of nano-composite Al 2014/4 wt.% Al2O3 produced from machining chips. J Alloys Compd 569:111–117

    Article  Google Scholar 

  72. Enayati MH, Bafandeh MR, Nosohian S (2007) Ball milling of stainless steel scrap chips to produce nanocrystalline powder. J Mater Sci 42:2844–2848

    Article  Google Scholar 

  73. Kano J, Chujo N, Saito F (1997) A method for simulating the three-dimensional motion of balls under the presence of a powder sample in a tumbling ball mill. Adv Powder Technol 8:39–51

    Article  Google Scholar 

  74. Mishra BK, Rajamani RK (1992) The discrete element method for the simulation of ball mills. Appl Math Model 16:598–604

    Article  Google Scholar 

  75. Dong H, Moys MH (2001) A technique to measure velocities of a ball moving in a tumbling mill and its applications. Miner Eng 14:841–850

    Article  Google Scholar 

  76. Kwade A (2004) Mill selection and process optimization using a physical grinding model. Int J Miner Process 74:S93–S101

    Article  Google Scholar 

  77. Ragab M, Salem HG (2012) Effect of milling energy on the structural evolution and stability of nanostructured Al-5.7wt.% Ni mechanically alloyed eutectic alloy. Powder Technol 222:108–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Gupta, R.K., Murty, B.S., Birbilis, N. (2017). High-Energy Ball Milling Parameters in Production of Nanocrystalline Al Alloys. In: An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-57031-0_2

Download citation

Publish with us

Policies and ethics