Skip to main content

Introduction

  • Chapter
  • First Online:
  • 623 Accesses

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Aluminum (Al) alloys, due to their lightweight and excellent physical properties are commonly used in aerospace, marine and automotive applications [1–5]. Various types of wrought Al alloys, with designations ranging from the so-called 1xxx to 8xxx series (and named according to the predominant alloying additions) have been developed in the past century [2]. Alloy properties depend upon chemical composition and thermomechanical processing employed, both of which influence the microstructure and the properties to a large extent. Among these alloys, the 7xxx series alloys (based on the Al-Zn-Mg system) have traditionally been the most commonly employed “high strength” alloys. The tensile strength of these alloys is as high as ~ 600 MPa, with modest ductility [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davis JR (1996) ASM speciality book, Aluminium and aluminium alloys. ASM International, Materials Park, OH

    Google Scholar 

  2. Polmear IJ (2006) Light alloys, 4th edn. Butterworth-Heinemann, London

    Google Scholar 

  3. Cole GS, Sherman AM (1995) Light weight materials for automotive applications. Mater Charact 35:3–9

    Article  Google Scholar 

  4. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49

    Article  Google Scholar 

  5. Rowe J (2012) Advanced materials in automotive engineering. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  6. Mallick PK (2012) Advanced materials for automotive applications: an overview. Adv Mater Auto Eng 2:5–27

    Article  Google Scholar 

  7. Lu K (2010) The future of metals. Science 328:319–320

    Article  Google Scholar 

  8. Liddicoat PV, Liao XZ, Zhao Y, Zhu Y, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 1:63

    Article  Google Scholar 

  9. Inoue A, Kimura H (2000) High-strength aluminum alloys containing nanoquasicrystalline particles. Mater Sci Eng A 286:1–10

    Article  Google Scholar 

  10. Inoue A, Kimura H (2001) Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system. J Light Met 1:31–41

    Article  Google Scholar 

  11. Galano M, Audebert F, Escorial AG, Stone IC, Cantor B (2010) Nanoquasicrystalline Al-Fe-Cr-based alloys with high strength at elevated temperature. J Alloys Compd 495:372–376

    Article  Google Scholar 

  12. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  Google Scholar 

  13. McFadden SX, Mishra RS, Vallev RZ, Zhilyaev AP, Mukherjee AK (1999) Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398:684–686

    Article  Google Scholar 

  14. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  Google Scholar 

  15. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  16. Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6:3–14

    Article  Google Scholar 

  17. Gleiter H (1992) Nanostructured materials. Adv Mater 4:474–481

    Article  Google Scholar 

  18. Bohn R, Haubold T, Birringer R, Gleiter H (1991) Nanocrystalline intermetallic compounds – an approach to ductility? Scr Metall Mater 25:811–816

    Article  Google Scholar 

  19. Liu G, Zhang GJ, Jiang F, Ding XD, Sun YJ, Sun J, Ma E (2013) Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater 12:344–350

    Article  Google Scholar 

  20. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  21. Gupta RK, Birbilis N, Zhang J (2012) Oxidation resistance of nanocrystalline alloys. In: Shih H (ed) Corrosion resistance. InTech, Rijeka, pp 213–238

    Google Scholar 

  22. Gupta RK, Singh Raman R, Koch CC (2010) Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy. J Mater Sci 45:4884–4888

    Article  Google Scholar 

  23. Inoue A (1998) Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci 43:365–520

    Article  Google Scholar 

  24. Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60

    Article  Google Scholar 

  25. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  26. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  27. Zhang DL (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49:537–560

    Article  Google Scholar 

  28. Pabi SK, Manna I, Murty BS (1999) Alloying behaviour in nanocrystalline materials during mechanical alloying. Bull Mater Sci 22:321–327

    Article  Google Scholar 

  29. Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21:433–446

    Article  Google Scholar 

  30. Murty BS, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43:101–141

    Article  Google Scholar 

  31. Schaffer GB, McCormick PG (1992) Mechanical alloying. Met Forum 16:91–97

    Google Scholar 

  32. Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22

    Article  Google Scholar 

  33. Raman RS, Gupta RK, Koch CC (2010) Resistance of nanocrystalline vis-à-vis microcrystalline Fe–Cr alloys to environmental degradation and challenges to their synthesis. Philos Mag 90:3233–3260

    Article  Google Scholar 

  34. Raman R, Gupta RK (2009) Oxidation resistance of nanocrystalline vis-à-vis microcrystalline Fe–Cr alloys. Corros Sci 51:316–321

    Article  Google Scholar 

  35. Gupta RK, Fabijanic D, Dorin T, Qiu Y, Wang JT, Birbilis N (2015) Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Mater Des 84:270–276

    Article  Google Scholar 

  36. Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643–650

    Article  Google Scholar 

  37. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502

    Article  Google Scholar 

  38. Suryanarayana C, Koch CC (2000) Nanocrystalline materials – current research and future directions. Hyperfine Interact 130:5–44

    Article  Google Scholar 

  39. Koch CC, Cho YS (1992) Nanocrystals by high energy ball milling. Nanostruct Mater 1:207–212

    Article  Google Scholar 

  40. Gupta RK, Sukiman NL, Cavanaugh MK, Hinton BRW, Hutchinson CR, Birbilis N (2012) Metastable pitting characteristics of aluminium alloys measured using current transients during potentiostatic polarisation. Electrochim Acta 66:245–254

    Article  Google Scholar 

  41. Gupta RK, Deschamps A, Cavanaugh MK, Lynch SP, Birbilis N (2012) Relating the early evolution of microstructure with the electrochemical response and mechanical performance of a Cu-rich and Cu-lean 7xxx aluminum alloy. J Electrochem Soc 159:C492–C502

    Article  Google Scholar 

  42. Sukiman NL, Zhou X, Birbilis N, Hughes AE, Mol JMC, Garcia SJ, Zhou X, Thompson GE (2012) Durability and corrosion of aluminium and its alloys: overview, property space, techniques and developments. In: Ahmad Z (ed) Aluminium alloys – new trends in fabrication and applications. InTech, Rijeka

    Google Scholar 

  43. Sukiman NL, Gupta RK, Birbilis N, Buchheit RG (2012) General aspects of the corrosion of aluminium alloys and performance of experimental alloys. Annual conference of the Australasian Corrosion Association, pp 696–702

    Google Scholar 

  44. Gupta RK, Raman RKS, Koch CC, Murty BS (2013) Effect of nanocrystalline structure on the corrosion of a Fe20Cr alloy. Int J Electrochem Sci 8:6791–6806

    Google Scholar 

  45. Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66:0750051–07500513

    Article  Google Scholar 

  46. Gupta RK, Singh Raman R, Koch C (2012) Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys. J Mater Sci 47:6118–6124

    Article  Google Scholar 

  47. Gupta RK, Darling KS, Singh Raman RK, Ravi KR, Koch CC, Murty BS, Scattergood RO (2012) Synthesis, characterization and mechanical behaviour of an in situ consolidated nanocrystalline FeCrNi alloy. J Mater Sci 47:1562–1566

    Article  Google Scholar 

  48. Gupta RK, Birbilis N (2015) The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros Sci 92:1–15

    Article  Google Scholar 

  49. Mondal K, Murty BS, Chatterjee UK (2006) Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments. Corros Sci 48:2212–2225

    Article  Google Scholar 

  50. Mondal K, Murty BS, Chatterjee UK (2005) Electrochemical behaviour of amorphous and nanoquasicrystalline Zr–Pd and Zr–Pt alloys in different environments. Corros Sci 47:2619–2635

    Article  Google Scholar 

  51. Das N, Dey GK, Murty BS, Pabi SK (2005) On amorphization and nanocomposite formation in Al-Ni-Ti system by mechanical alloying. Pramana J Phys 65:831–840

    Article  Google Scholar 

  52. Murty BS (1993) Mechanical alloying—a novel synthesis route for amorphous phases. Bull Mater Sci 16:1–17

    Article  Google Scholar 

  53. Murty BS, Naik MD, Rao MM, Ranganathan S (1992) Glass forming composition range in the Al-Ti system by mechanical alloying. Met Forum 16:19–26

    Google Scholar 

  54. Koch CC, Whittenberger JD (1996) Mechanical milling/alloying of intermetallics. Intermetallics 4:339–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Gupta, R.K., Murty, B.S., Birbilis, N. (2017). Introduction. In: An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-57031-0_1

Download citation

Publish with us

Policies and ethics