Skip to main content

Biologics, Conduits, Allografts, and Autografts in Carpal Tunnel Syndrome

  • Chapter
  • First Online:
Carpal Tunnel Syndrome and Related Median Neuropathies
  • 2220 Accesses

Abstract

Though generally considered a safe and effective procedure, carpal tunnel release can occasionally result in median nerve injury or chronic scarring, leading to nerve dysfunction. In the past, nerve wrapping with the autologous tissue and repair with nerve autograft were the only options for nerve protection and reconstruction, respectively. Recent advancements in tissue engineering and the wide availability of biotolerant materials have improved operative efficiency while avoiding donor site morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kozak LJ, Owings MF. Ambulatory and inpatient procedures in the United States, 1995. Vital Health Stat Ser 13 Data Natl Health Surv. 1998;(135):1–116.

    Google Scholar 

  2. Ariyan S, Watson HK. The palmar approach for the visualization and release of the carpal tunnel. An analysis of 429 cases. Plast Reconstr Surg. 1977;60(4):539–47.

    Article  CAS  PubMed  Google Scholar 

  3. Hanssen AD, Amadio PC, DeSilva SP, Ilstrup DM. Deep postoperative wound infection after carpal tunnel release. J Hand Surg. 1989;14(5):869–73.

    Article  CAS  Google Scholar 

  4. Harness NG, Inacio MC, Pfeil FF, Paxton LW. Rate of infection after carpal tunnel release surgery and effect of antibiotic prophylaxis. J Hand Surg. 2010;35(2):189–96.

    Article  Google Scholar 

  5. Kleinert JM, Hoffmann J, Miller Crain G, Larsen CF, Goldsmith LJ, Firrell JC. Postoperative infection in a double-occupancy operating room. A prospective study of two thousand four hundred and fifty-eight procedures on the extremities. J Bone Joint Surg Am Vol. 1997;79(4):503–13.

    Article  CAS  Google Scholar 

  6. Rahman KU, Rahman S, Khan A, Khan NA, Khan FU, Khan RA, et al. Assessing the complications and effectiveness of open carpal tunnel release in a tertiary care centre in a developing country. Int J Surg Case Rep. 2014;5(4):209–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shapiro S. Microsurgical carpal tunnel release. Neurosurgery. 1995;37(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  8. Mackinnon SE. Pathophysiology of nerve compression. Hand Clin. 2002;18(2):231–41.

    Article  PubMed  Google Scholar 

  9. Mackinnon SE, O’Brien JP, Dellon AL, McLean AR, Hudson AR, Hunter DA. An assessment of the effects of internal neurolysis on a chronically compressed rat sciatic nerve. Plast Reconstr Surg. 1988;81(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  10. Mackinnon SE, Dellon AL. Evaluation of microsurgical internal neurolysis in a primate median nerve model of chronic nerve compression. J Hand Surg. 1988;13(3):345–51.

    Article  CAS  Google Scholar 

  11. Tuzuner S, Inceoglu S, Bilen FE. Median nerve excursion in response to wrist movement after endoscopic and open carpal tunnel release. J Hand Surg. 2008;33(7):1063–8.

    Article  Google Scholar 

  12. Wright TW, Glowczewskie F, Wheeler D, Miller G, Cowin D. Excursion and strain of the median nerve. J Bone Joint Surg Am Vol. 1996;78(12):1897–903.

    Article  CAS  Google Scholar 

  13. Szabo RM, Bay BK, Sharkey NA, Gaut C. Median nerve displacement through the carpal canal. J Hand Surg. 1994;19(6):901–6.

    Article  CAS  Google Scholar 

  14. Clark WL, Trumble TE, Swiontkowski MF, Tencer AF. Nerve tension and blood flow in a rat model of immediate and delayed repairs. J Hand Surg. 1992;17(4):677–87.

    Article  CAS  Google Scholar 

  15. Hunter JM. Recurrent carpal tunnel syndrome, epineural fibrous fixation, and traction neuropathy. Hand Clin. 1991;7(3):491–504.

    CAS  PubMed  Google Scholar 

  16. Benson LS, Bare AA, Nagle DJ, Harder VS, Williams CS, Visotsky JL. Complications of endoscopic and open carpal tunnel release. Arthroscopy J Arthroscopy Relat Surg Off Publ Arthroscopy Assoc N Am Int Arthroscopy Assoc. 2006;22(9):919–24 e1-2.

    Google Scholar 

  17. Zaidman CM, Seelig MJ, Baker JC, Mackinnon SE, Pestronk A. Detection of peripheral nerve pathology: comparison of ultrasound and MRI. Neurology. 2013;80(18):1634–40.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pham M, Baumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol. 2014;27(4):370–9.

    Article  PubMed  Google Scholar 

  19. Palazzi S, Vila-Torres J, Lorenzo JC. Fibrin glue is a sealant and not a nerve barrier. J Reconstr Microsurg. 1995;11(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  20. Owusu A, Mayeda B, Isaacs J. Surgeon perspectives on alternative nerve repair techniques. Hand (N Y). 2014;9(1):29–35.

    Article  Google Scholar 

  21. Smahel J, Meyer VE, Bachem U. Glueing of peripheral nerves with fibrin: experimental studies. J Reconstr Microsurg. 1987;3(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  22. Becker CM, Gueuning CO, Graff GL. Sutures or fibrin glue for divided rat nerves: Schwann cell and muscle metabolism. Microsurgery. 1985;6(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Povlsen B. A new fibrin seal: functional evaluation of sensory regeneration following primary repair of peripheral nerves. J Hand Surg. 1994;19(2):250–4.

    Article  CAS  Google Scholar 

  24. Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante PL, et al. Fibrin glue: an alternative technique for nerve coaptation--part I. Wave amplitude, conduction velocity, and plantar-length factors. J Reconstr Microsurg. 2006;22(2):119–22.

    Article  PubMed  Google Scholar 

  25. Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante RL, et al. Fibrin glue: an alternative technique for nerve coaptation--part II. Nerve regeneration and histomorphometric assessment. J Reconstr Microsurg. 2006;22(2):123–8.

    Article  PubMed  Google Scholar 

  26. Martins RS, Siqueira MG, Da Silva CF, Plese JP. Overall assessment of regeneration in peripheral nerve lesion repair using fibrin glue, suture, or a combination of the 2 techniques in a rat model. Which is the ideal choice? Surg Neurol. 2005;64(Suppl 1):S1:10–6. discussion S1:6

    Google Scholar 

  27. Martins RS, Siqueira MG, Silva CF, Godoy BO, Plese JP. Electrophysiologic assessment of regeneration in rat sciatic nerve repair using suture, fibrin glue or a combination of both techniques. Arq Neuropsiquiatr. 2005;63(3A):601–4.

    Article  PubMed  Google Scholar 

  28. Inaloz SS, Ak HE, Vayla V, Akin M, Aslan A, Sari I, et al. Comparison of microsuturing to the use of tissue adhesives in anastomosing sciatic nerve cuts in rats. Neurosurg Rev. 1997;20(4):250–8.

    Article  CAS  PubMed  Google Scholar 

  29. Faldini A, Puntoni P, Magherini PC, Lisanti M, Carlucci F, Risaliti R. Comparative neurophysiological assessments of nerve sutures performed by microsurgical methods and with fibrin glue: experimental study. Ital J Orthop Traumatol. 1984;10(4):527–32.

    CAS  PubMed  Google Scholar 

  30. Nishimura MT, Mazzer N, Barbieri CH, Moro CA. Mechanical resistance of peripheral nerve repair with biological glue and with conventional suture at different postoperative times. J Reconstr Microsurg. 2008;24(5):327–32.

    Article  PubMed  Google Scholar 

  31. Temple CL, Ross DC, Dunning CE, Johnson JA. Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques. J Reconstr Microsurg. 2004;20(8):645–50.

    Article  CAS  PubMed  Google Scholar 

  32. Maragh H, Meyer BS, Davenport D, Gould JD, Terzis JK. Morphofunctional evaluation of fibrin glue versus microsuture nerve repairs. J Reconstr Microsurg. 1990;6(4):331–7.

    Article  CAS  PubMed  Google Scholar 

  33. Menovsky T, Beek JF. Laser, fibrin glue, or suture repair of peripheral nerves: a comparative functional, histological, and morphometric study in the rat sciatic nerve. J Neurosurg. 2001;95(4):694–9.

    Article  CAS  PubMed  Google Scholar 

  34. Isaacs JE, McDaniel CO, Owen JR, Wayne JS. Comparative analysis of biomechanical performance of available "nerve glues". J Hand Surg. 2008;33(6):893–9.

    Article  Google Scholar 

  35. Danielsen N, Varon S. Characterization of neurotrophic activity in the silicone-chamber model for nerve regeneration. J Reconstr Microsurg. 1995;11(3):231–5.

    Article  CAS  PubMed  Google Scholar 

  36. Ducic I, Fu R, Iorio ML. Innovative treatment of peripheral nerve injuries: combined reconstructive concepts. Ann Plast Surg. 2012;68(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  37. Evans PJ, Bain JR, Mackinnon SE, Makino AP, Hunter DA. Selective reinnervation: a comparison of recovery following microsuture and conduit nerve repair. Brain Res. 1991;559(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidhammer R, Zandieh S, Hopf R, Mizner I, Pelinka LE, Kroepfl A, et al. Alleviated tension at the repair site enhances functional regeneration: the effect of full range of motion mobilization on the regeneration of peripheral nerves--histologic, electrophysiologic, and functional results in a rat model. J Trauma. 2004;56(3):571–84.

    Article  PubMed  Google Scholar 

  39. Lundborg G, Rosen B, Dahlin L, Danielsen N, Holmberg J. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg. 1997;22(1):99–106.

    Article  CAS  Google Scholar 

  40. Lundborg G, Rosen B, Dahlin L, Holmberg J, Rosen I. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg. 2004;29(2):100–7.

    Article  CAS  Google Scholar 

  41. Boeckstyns ME, Sorensen AI, Vineta JF, Rosen B, Navarro X, Archibald SJ, et al. Collagen conduit versus microsurgical neurorrhaphy: 2-year follow-up of a prospective, blinded clinical and electrophysiological multicenter randomized, controlled trial. J Hand Surg. 2013;38(12):2405–11.

    Article  Google Scholar 

  42. Rinker B, Liau JY. A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. J Hand Surg. 2011;36(5):775–81.

    Article  Google Scholar 

  43. Williams LR, Longo FM, Powell HC, Lundborg G, Varon S. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol. 1983;218(4):460–70.

    Article  CAS  PubMed  Google Scholar 

  44. Shin RH, Friedrich PF, Crum BA, Bishop AT, Shin AY. Treatment of a segmental nerve defect in the rat with use of bioabsorbable synthetic nerve conduits: a comparison of commercially available conduits. J Bone Joint Surg Am Vol. 2009;91(9):2194–204.

    Article  Google Scholar 

  45. Haug A, Bartels A, Kotas J, Kunesch E. Sensory recovery 1 year after bridging digital nerve defects with collagen tubes. J Hand Surg. 2013;38(1):90–7.

    Article  Google Scholar 

  46. Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg. 2011;36(9):1441–6.

    Article  Google Scholar 

  47. Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.

    Article  PubMed  Google Scholar 

  48. Lohmeyer JA, Siemers F, Machens HG, Mailander P. The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Microsurg. 2009;25(1):55–61.

    Article  PubMed  Google Scholar 

  49. Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE. Limitations of conduits in peripheral nerve repairs. Hand (N Y). 2009;4(2):180–6.

    Article  Google Scholar 

  50. Chiriac S, Facca S, Diaconu M, Gouzou S, Liverneaux P. Experience of using the bioresorbable copolyester poly(DL-lactide-epsilon-caprolactone) nerve conduit guide Neurolac for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur Vol. 2012;37(4):342–9.

    Article  CAS  PubMed  Google Scholar 

  51. Krekoski CA, Neubauer D, Zuo J, Muir D. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci. 2001;21(16):6206–13.

    CAS  PubMed  Google Scholar 

  52. Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.

    Article  CAS  PubMed  Google Scholar 

  53. Giusti G, Willems WF, Kremer T, Friedrich PF, Bishop AT, Shin AY. Return of motor function after segmental nerve loss in a rat model: comparison of autogenous nerve graft, collagen conduit, and processed allograft (AxoGen). J Bone Joint Surg Am Vol. 2012;94(5):410–7.

    Article  Google Scholar 

  54. Johnson PJ, Newton P, Hunter DA, Mackinnon SE. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27(2):83–90.

    Article  PubMed  Google Scholar 

  55. Karabekmez FE, Duymaz A, Moran SL. Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (N Y). 2009;4(3):245–9.

    Article  Google Scholar 

  56. Taras JS, Amin N, Patel N, McCabe LA. Allograft reconstruction for digital nerve loss. J Hand Surg. 2013;38(10):1965–71.

    Article  Google Scholar 

  57. Cho MS, Rinker BD, Weber RV, Chao JD, Ingari JV, Brooks D, et al. Functional outcome following nerve repair in the upper extremity using processed nerve allograft. J Hand Surg. 2012;37(11):2340–9.

    Article  Google Scholar 

  58. Zuniga JR. Sensory outcomes after reconstruction of lingual and inferior alveolar nerve discontinuities using processed nerve allograft--a case series. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2015;73(4):734–44.

    Article  Google Scholar 

  59. Chow JA, Van Beek AL, Bilos ZJ, Meyer DL, Johnson MC. Anatomical basis for repair of ulnar and median nerves in the distal part of the forearm by group fascicular suture and nerve-grafting. J Bone Joint Surg Am Vol. 1986;68(2):273–80.

    Article  CAS  Google Scholar 

  60. Meek MF, Coert JH, Robinson PH. Poor results after nerve grafting in the upper extremity: Quo vadis? Microsurgery. 2005;25(5):396–402.

    Article  CAS  PubMed  Google Scholar 

  61. Ruijs ACJ, Jaquet J-B, Kalmijn S, Giele H, Hovius SER. Median and ulnar nerve injuries: a meta-analysis of predictors of motor and sensory recovery after modern microsurgical nerve repair. Plast Reconstr Surg. 2005;116(2):484–94.

    Article  CAS  PubMed  Google Scholar 

  62. Kim DH, Kam AC, Chandika P, Tiel RL, Kline DG. Surgical management and outcomes in patients with median nerve lesions. J Neurosurg. 2001;95(4):584–94.

    Article  CAS  PubMed  Google Scholar 

  63. Kokkalis ZT, Pu C, Small GA, Weiser RW, Venouziou AI, Sotereanos DG. Assessment of processed porcine extracellular matrix as a protective barrier in a rabbit nerve wrap model. J Reconstr Microsurg. 2011;27(1):19–28.

    Article  PubMed  Google Scholar 

  64. Papatheodorou LK, Williams BG, Sotereanos DG. Preliminary results of recurrent cubital tunnel syndrome treated with neurolysis and porcine extracellular matrix nerve wrap. J Hand Surg. 2015;40(5):987–92.

    Article  Google Scholar 

  65. Soltani AM, Allan BJ, Best MJ, Mir HS, Panthaki ZJ. Revision decompression and collagen nerve wrap for recurrent and persistent compression neuropathies of the upper extremity. Ann Plast Surg. 2014;72(5):572–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Isaacs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isaacs, J.E., Zhang, S. (2017). Biologics, Conduits, Allografts, and Autografts in Carpal Tunnel Syndrome. In: Duncan, S., Kakinoki, R. (eds) Carpal Tunnel Syndrome and Related Median Neuropathies. Springer, Cham. https://doi.org/10.1007/978-3-319-57010-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57010-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57008-2

  • Online ISBN: 978-3-319-57010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics