Skip to main content

Organic Porous Polymer Materials: Design, Preparation, and Applications

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The synthesis of porous organic polymer materials with nanoscale range has long been an important science subject and received an increasing level of research interest owing to their essential properties merging both of the porous materials and polymers such as low skeleton density, processability, easy functionality, and diverse synthetic methods. In this chapter, several porous polymer materials including covalent organic frameworks (COFs), hypercrosslinked polymers (HCPs), conjugated microporous polymers (CMPs), polymers of intrinsic microporosity (PIMs), and macroporous polymers from high internal phase emulsions (HIPEs) will be introduced as well as their diversiform synthetic methods and potential applications including gas storage, carbon capture, separation, catalysis, sensing, energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu D, Xu F, Sun B et al (2012) Design and preparation of porous polymers. Chem Rev 112(7):3959–4015

    Article  Google Scholar 

  2. Ben T, Ren H, Ma S et al (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 48(50):9457–9460

    Article  Google Scholar 

  3. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL et al (2007) Designed synthesis of 3d covalent organic frameworks. Science 316(5822):268–272

    Article  Google Scholar 

  4. Jiang J-X, Trewin A, Su F et al (2009) Microporous poly(tri(4-ethynylphenyl)amine) networks: synthesis, properties, and atomistic simulation. Macromolecules 42(7):2658–2666

    Article  Google Scholar 

  5. Shi S, Chen C, Wang M et al (2014) Designing a yolk-shell type porous organic network using a phenyl modified template. Chem Commun 50(65):9079–9082

    Article  Google Scholar 

  6. Yang X, Song K, Tan L et al (2014) Hollow microporous organic capsules loaded with highly dispersed Pt nanoparticles for catalytic applications. Macromol Chem Phys 215(12):1257–1263

    Article  Google Scholar 

  7. Li B, Yang X, Xia L et al (2013) Hollow microporous organic capsules. Sci Rep 3:2128

    Article  Google Scholar 

  8. Chinnappan A, Chung W-J, Kim H (2015) Hypercross-linked microporous polymeric ionic liquid membranes: synthesis, properties and their application in H2 generation. J Mater Chem A 3(45):22960–22968

    Article  Google Scholar 

  9. Qiao Z, Chai S, Nelson K et al (2014) Polymeric molecular sieve membranes via in situ crosslinking of non-porous polymer membrane templates. Nat Commun 5:3705

    Google Scholar 

  10. Kim JK, Yang SY, Lee Y et al (2010) Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci 35(11):1325–1349

    Article  Google Scholar 

  11. Beiler B, Vincze Á, Svec F et al (2007) Poly(2-hydroxyethyl acrylate-co-ethyleneglycol dimethacrylate) monoliths synthesized by radiation polymerization in a mold. Polymer 48(11):3033–3040

    Article  Google Scholar 

  12. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217(6):902–924

    Article  Google Scholar 

  13. Wood CD, Tan B, Trewin A et al (2008) Microporous organic polymers for methane storage. Adv Mater 20(10):1916–1921

    Article  Google Scholar 

  14. Yang X, Tan L, Xia L et al (2015) Hierarchical porous polystyrene monoliths from polyHIPE. Macromol Rapid Commun 36(17):1553–1558

    Article  Google Scholar 

  15. Maya F, Svec F (2014) A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of loose chains using external crosslinkers and application of these monolithic columns for separation of small molecules. Polymer 55(1):340–346

    Article  Google Scholar 

  16. Budd PM, Ghanem BS, Makhseed S et al (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun 2:230–231

    Article  Google Scholar 

  17. Ghanem BS, McKeown NB, Budd PM et al (2008) Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. Macromolecules 41(5):1640–1646

    Article  Google Scholar 

  18. Weber J, Su Q, Antonietti M et al (2007) Exploring polymers of intrinsic microporosity—microporous, soluble polyamide and polyimide. Macromol Rapid Commun 28(18–19):1871–1876

    Article  Google Scholar 

  19. Du N, Robertson GP, Song J et al (2008) Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 41(24):9656–9662

    Article  Google Scholar 

  20. Yao S, Yang X, Yu M et al (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J Mater Chem A 2(21):8054–8059

    Article  Google Scholar 

  21. Li B, Guan Z, Yang X et al (2014) Multifunctional microporous organic polymers. J Mater Chem A 2(30):11930–11939

    Article  Google Scholar 

  22. Zhu X, Mahurin SM, An S-H et al (2014) Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chem Commun 50(59):7933–7936

    Article  Google Scholar 

  23. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  24. Germain J, Fréchet JMJ, Svec F (2009) Nanoporous polymers for hydrogen storage. Small 5(10):1098–1111

    Article  Google Scholar 

  25. Jiang J-X, Su F, Trewin A et al (2007) Conjugated microporous poly (aryleneethynylene) networks. Angew Chem Int Ed 46(45):8574–8578

    Article  Google Scholar 

  26. Dawson R, Su F, Niu H et al (2008) Mesoporous poly(phenylenevinylene) networks. Macromolecules 41(5):1591–1593

    Article  Google Scholar 

  27. Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37(4):530–563

    Article  Google Scholar 

  28. Côté AP, Benin AI, Ockwig NW et al (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170

    Article  Google Scholar 

  29. Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34(6):471–484

    Article  Google Scholar 

  30. Tan L, Tan B (2015) Research progress in hypercrosslinked microporous organic polymers. Acta Chim Sinica 73(6):530–540

    Article  Google Scholar 

  31. Cooper AI (2009) Conjugated microporous polymers. Adv Mater 21(12):1291–1295

    Article  Google Scholar 

  32. Xu Y, Jin S, Xu H et al (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031

    Article  Google Scholar 

  33. McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683

    Article  Google Scholar 

  34. McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43(12):5163–5176

    Article  Google Scholar 

  35. Ren S, Bojdys MJ, Dawson R et al (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24(17):2357–2361

    Article  Google Scholar 

  36. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453

    Article  Google Scholar 

  37. Ben T, Qiu S (2013) Porous aromatic frameworks: synthesis, structure and functions. Cryst Eng Comm 15(1):17–26

    Article  Google Scholar 

  38. Stockel E, Wu X, Trewin A et al (2009) High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chem Commun 2:212–214

    Article  Google Scholar 

  39. Rowan SJ, Cantrill SJ, Cousins GRL et al (2002) Dynamic covalent chemistry. Angew Chem Int Ed 41(6):898–952

    Article  Google Scholar 

  40. O’Keeffe M (2009) Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev 38(5):1215–1217

    Article  Google Scholar 

  41. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev 112(2):675–702

    Article  Google Scholar 

  42. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082

    Article  Google Scholar 

  43. Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131(11):3875–3877

    Article  Google Scholar 

  44. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M et al (2009) Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev 38(5):1257–1283

    Article  Google Scholar 

  45. Waller PJ, Gandara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48(12):3053–3063

    Article  Google Scholar 

  46. Feng X, Liu L, Honsho Y et al (2012) High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew Chem Int Ed 51(11):2618–2622

    Article  Google Scholar 

  47. Beletskaya I, Tyurin VS, Tsivadze AY et al (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109(5):1659–1713

    Article  Google Scholar 

  48. Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2(8):672–677

    Article  Google Scholar 

  49. Bojdys MJ, Jeromenok J, Thomas A et al (2010) Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv Mater 22(19):2202–2205

    Article  Google Scholar 

  50. Ding X, Guo J, Feng X et al (2011) Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew Chem Int Ed 50(6):1289–1293

    Article  Google Scholar 

  51. Ding X, Chen L, Honsho Y et al (2011) An n-channel two-dimensional covalent organic framework. J Am Chem Soc 133(37):14510–14513

    Article  Google Scholar 

  52. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43(46):6250–6284

    Article  Google Scholar 

  53. Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 13(2):71–193

    Article  Google Scholar 

  54. Makhseed S, Samuel J (2008) Hydrogen adsorption in microporous organic framework polymer. Chem Commun 36:4342–4344

    Article  Google Scholar 

  55. Ritchie LK, Trewin A, Reguera-Galan A et al (2010) Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous Mesoporous Mater 132(1–2):132–136

    Article  Google Scholar 

  56. Zwaneveld NAA, Pawlak R, Abel M et al (2008) Organized formation of 2D extended covalent organic frameworks at surfaces. J Am Chem Soc 130(21):6678–6679

    Article  Google Scholar 

  57. Guan CZ, Wang D, Wan LJ (2012) Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem Commun 48(24):2943–2945

    Article  Google Scholar 

  58. Colson JW, Woll AR, Mukherjee A et al (2011) Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332(6026):228–231

    Article  Google Scholar 

  59. Spitler EL, Colson JW, Uribe-Romo FJ et al (2012) Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew Chem Int Ed 51(11):2623–2627

    Article  Google Scholar 

  60. Spitler EL, Koo BT, Novotney JL et al (2011) A 2D covalent organic framework with 47-nm pores and insight into its interlayer stacking. J Am Chem Soc 133(48):19416–19421

    Article  Google Scholar 

  61. Dienstmaier JF, Medina DD, Dogru M et al (2012) Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6(8):7234–7242

    Article  Google Scholar 

  62. Kalidindi SB, Wiktor C, Ramakrishnan A et al (2013) Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1. Chem Commun 49(5):463–465

    Article  Google Scholar 

  63. Smith BJ, Dichtel WR (2014) Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J Am Chem Soc 136(24):8783–8789

    Article  Google Scholar 

  64. Wan S, Guo J, Kim J et al (2008) A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed 47(46):8826–8830

    Article  Google Scholar 

  65. Chen L, Furukawa K, Gao J et al (2014) Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. J Am Chem Soc 136(28):9806–9809

    Article  Google Scholar 

  66. Xu F, Jin S, Zhong H et al (2015) Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci Rep 5:8225

    Article  Google Scholar 

  67. Huang N, Ding X, Kim J et al (2015) A photoresponsive smart covalent organic framework. Angew Chem Int Ed 54(30):8704–8707

    Article  Google Scholar 

  68. Yang H, Du Y, Wan S et al (2015) Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chem Sci 6(7):4049–4053

    Article  Google Scholar 

  69. Feng X, Dong Y, Jiang D (2013) Star-shaped two-dimensional covalent organic frameworks. Cryst Eng Comm 15(8):1508–1511

    Article  Google Scholar 

  70. Uribe-Romo FJ, Hunt JR, Furukawa H et al (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131(13):4570–4571

    Article  Google Scholar 

  71. Chen X, Addicoat M, Irle S et al (2013) Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary pi-electronic force. J Am Chem Soc 135(2):546–549

    Article  Google Scholar 

  72. Xu H, Jiang D (2014) Covalent organic frameworks: crossing the channel. Nat Chem 6(7):564–566

    Article  Google Scholar 

  73. Chen X, Addicoat M, Jin E et al (2015) Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J Am Chem Soc 137(9):3241–3247

    Article  Google Scholar 

  74. Dalapati S, Addicoat M, Jin S et al (2015) Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat Commun 6:7786

    Article  Google Scholar 

  75. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7(11):905–912

    Article  Google Scholar 

  76. Huang N, Krishna R, Jiang D (2015) Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening. J Am Chem Soc 137(22):7079–7082

    Article  Google Scholar 

  77. Kandambeth S, Mallick A, Lukose B et al (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134(48):19524–19527

    Article  Google Scholar 

  78. Biswal BP, Chandra S, Kandambeth S et al (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135(14):5328–5331

    Article  Google Scholar 

  79. Chandra S, Kandambeth S, Biswal BP et al (2013) Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc 135(47):17853–17861

    Article  Google Scholar 

  80. Chandra S, Kundu T, Kandambeth S et al (2014) Phosphoric acid loaded azo (–N horizontal line N–) based covalent organic framework for proton conduction. J Am Chem Soc 136(18):6570–6573

    Article  Google Scholar 

  81. Das G, Biswal BP, Kandambeth S et al (2015) Chemical sensing in two dimensional porous covalent organic nanosheets. Chem Sci 6(7):3931–3939

    Article  Google Scholar 

  82. Chen X, Huang N, Gao J et al (2014) Towards covalent organic frameworks with predesignable and aligned open docking sites. Chem Commun 50(46):6161–6163

    Article  Google Scholar 

  83. Das G, Balaji Shinde D, Kandambeth S et al (2014) Mechanosynthesis of imine, beta-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem Commun 50(84):12615–12618

    Article  Google Scholar 

  84. Fang Q, Gu S, Zheng J et al (2014) 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed 53(11):2878–2882

    Article  Google Scholar 

  85. Zhou TY, Xu SQ, Wen Q et al (2014) One-step construction of two different kinds of pores in a 2D covalent organic framework. J Am Chem Soc 136(45):15885–15888

    Article  Google Scholar 

  86. Zhu Y, Wan S, Jin Y et al (2015) Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J Am Chem Soc 137(43):13772–13775

    Article  Google Scholar 

  87. Uribe-Romo FJ, Doonan CJ, Furukawa H et al (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133(30):11478–11481

    Article  Google Scholar 

  88. Ding SY, Dong M, Wang YW et al (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc 138(9):3031–3037

    Article  Google Scholar 

  89. Fang Q, Zhuang Z, Gu S et al (2014) Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun 5:4503

    Google Scholar 

  90. Fang Q, Wang J, Gu S et al (2015) 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137(26):8352–8355

    Article  Google Scholar 

  91. Zeng Y, Zou R, Luo Z et al (2015) Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. J Am Chem Soc 137(3):1020–1023

    Article  Google Scholar 

  92. Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91(4):157–172

    Article  Google Scholar 

  93. Fichtner M (2005) Nanotechnological aspects in materials for hydrogen storage. Adv Eng Mater 7(6):443–455

    Article  Google Scholar 

  94. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883

    Article  Google Scholar 

  95. Furukawa H, Miller MA, Yaghi OM (2007) Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J Mater Chem 17(30):3197–3204

    Article  Google Scholar 

  96. Kaye SS, Dailly A, Yaghi OM et al (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177

    Article  Google Scholar 

  97. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652

    Article  Google Scholar 

  98. Xu X, Song C, Andrésen JM et al (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62(1–2):29–45

    Article  Google Scholar 

  99. Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  Google Scholar 

  100. Doonan CJ, Tranchemontagne DJ, Glover TG et al (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2(3):235–238

    Article  Google Scholar 

  101. MacMillan DW (2008) The advent and development of organocatalysis. Nature 455(7211):304–308

    Article  Google Scholar 

  102. Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112(2):1196–1231

    Article  Google Scholar 

  103. Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  Google Scholar 

  104. Ding SY, Gao J, Wang Q et al (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc 133(49):19816–19822

    Article  Google Scholar 

  105. Mullangi D, Nandi S, Shalini S et al (2015) Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C–C couplings and CO oxidation. Sci Rep 5:10876

    Article  Google Scholar 

  106. Wan S, Guo J, Kim J et al (2009) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew Chem Int Ed 48(30):5439–5442

    Article  Google Scholar 

  107. Shultz AM, Farha OK, Hupp JT et al (2009) A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc 131(12):4204–4205

    Article  Google Scholar 

  108. Drain CM, Varotto A, Radivojevic I (2009) Self-organized porphyrinic materials. Chem Rev 109(5):1630–1658

    Article  Google Scholar 

  109. Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 132(26):9138–9143

    Article  Google Scholar 

  110. Tsyurupa MP, Davankov VA (2002) Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials. React Funct Polym 53(2–3):193–203

    Article  Google Scholar 

  111. Davankov VA, Rogozhin SV, Tsyurupa MP (1971) US Patent 3729457

    Google Scholar 

  112. Tsyurupa MP, Davankov VA (2006) Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React Funct Polym 66(7):768–779

    Article  Google Scholar 

  113. Germain J, Fréchet JMJ, Svec F (2007) Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J Mater Chem 17(47):4989

    Article  Google Scholar 

  114. Davankov VA, Ilyin MM, Tsyurupa MP et al (1996) From a dissolved polystyrene coil to an intramolecularly-hyper-cross-linked “nanosponge”. Macromolecules 29(26):8398–8403

    Article  Google Scholar 

  115. Davankov V, Tsyurupa M, Ilyin M et al (2002) Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review. J Chromatogr A 965(1–2):65–73

    Article  Google Scholar 

  116. Tsyurupa MP, Blinnikova ZK, Borisov YA et al (2014) Physicochemical and adsorption properties of hypercross-linked polystyrene with ultimate crosslinking density. J Sep Sci 37(7):803–810

    Article  Google Scholar 

  117. Hradil J, Králová E (1998) Styrene-divinylbenzene copolymers post-crosslinked with tetrachloromethane. Polymer 39(24):6041–6048

    Article  Google Scholar 

  118. Veverka P, Jeřábek K (1999) Mechanism of hypercrosslinking of chloromethylated styrene-divinylbenzene copolymers. React Funct Polym 41(1–3):21–25

    Article  Google Scholar 

  119. Ahn J-H, Jang J-E, Oh C-G et al (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in davankov-type hyper-cross-linked resins. Macromolecules 39(2):627–632

    Article  Google Scholar 

  120. Li B, Gong R, Luo Y et al (2011) Tailoring the pore size of hypercrosslinked polymers. Soft Matter 7(22):10910–10916

    Article  Google Scholar 

  121. Seo M, Kim S, Oh J et al (2015) Hierarchically porous polymers from hyper-cross-linked block polymer precursors. J Am Chem Soc 137(2):600–603

    Article  Google Scholar 

  122. Li Z, Wu D, Huang X et al (2014) Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking. Energy Environ Sci 7(9):3006–3012

    Article  Google Scholar 

  123. Wood CD, Tan B, Trewin A et al (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19(8):2034–2048

    Article  Google Scholar 

  124. Martín CF, Stöckel E, Clowes R et al (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J Mater Chem 21(14):5475–5483

    Article  Google Scholar 

  125. Yang Y, Zhang Q, Zhang S et al (2013) Synthesis and characterization of triphenylamine-containing microporous organic copolymers for carbon dioxide uptake. Polymer 54(21):5698–5702

    Article  Google Scholar 

  126. Yang Y, Zhang Q, Zhang S et al (2014) Triphenylamine-containing microporous organic copolymers for hydrocarbons/water separation. RSC Adv 4(11):5568–5574

    Article  Google Scholar 

  127. Luo Y, Zhang S, Ma Y et al (2013) Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym Chem 4(4):1126–1131

    Article  Google Scholar 

  128. Grzybowski M, Skonieczny K, Butenschön H et al (2013) Comparison of oxidative aromatic coupling and the scholl reaction. Angew Chem Int Ed 52(38):9900–9930

    Article  Google Scholar 

  129. Li L, Ren H, Yuan Y et al (2014) Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J Mater Chem A 2(29):11091–11098

    Article  Google Scholar 

  130. Li B, Gong R, Wang W et al (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414

    Article  Google Scholar 

  131. Dawson R, Stoeckel E, Holst JR et al (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4(10):4239–4245

    Article  Google Scholar 

  132. Nielsen CJ, Herrmann H, Weller C (2012) Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 41(19):6684–6704

    Article  Google Scholar 

  133. Chen S, Zhang J, Wu T et al (2009) Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J Am Chem Soc 131(44):16027–16029

    Article  Google Scholar 

  134. Couck S, Denayer JFM, Baron GV et al (2009) An Amine-Functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131(18):6326–6327

    Article  Google Scholar 

  135. Farha OK, Spokoyny AM, Hauser BG et al (2009) Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer. Chem Mater 21(14):3033–3035

    Article  Google Scholar 

  136. Woodward RT, Stevens LA, Dawson R et al (2014) Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture. J Am Chem Soc 136(25):9028–9035

    Article  Google Scholar 

  137. Dawson R, Ratvijitvech T, Corker M et al (2012) Microporous copolymers for increased gas selectivity. Polym Chem 3(8):2034–2038

    Article  Google Scholar 

  138. Dawson R, Stevens LA, Drage TC et al (2012) Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134(26):10741–10744

    Article  Google Scholar 

  139. Jing X, Zou D, Cui P et al (2013) Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake. J Mater Chem A 1(44):13926–13931

    Article  Google Scholar 

  140. Li H, Meng B, Mahurin SM et al (2015) Carbohydrate based hyper-crosslinked organic polymers with –OH functional groups for CO2 separation. J Mater Chem A 3(42):20913–20918

    Article  Google Scholar 

  141. Zhu J-H, Chen Q, Sui Z-Y et al (2014) Preparation and adsorption performance of cross-linked porous polycarbazoles. J Mater Chem A 2(38):16181–16189

    Article  Google Scholar 

  142. Yang X, Yu M, Zhao Y et al (2014) Hypercrosslinked microporous polymers based on carbazole for gas storage and separation. RSC Adv 4(105):61051–61055

    Article  Google Scholar 

  143. Zhang Y, Li Y, Wang F et al (2014) Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer 55(22):5746–5750

    Article  Google Scholar 

  144. Yang X, Yu M, Zhao Y et al (2014) Remarkable gas adsorption by carbonized nitrogen-rich hypercrosslinked porous organic polymers. J Mater Chem A 2(36):15139–15145

    Article  Google Scholar 

  145. Zhai T-L, Tan L, Luo Y et al (2016) Microporous polymers from a carbazole-based triptycene monomer: synthesis and their applications for gas uptake. Chem-Asian J 11(2):294–298

    Article  Google Scholar 

  146. Zhang C, Zhu P-C, Tan L et al (2016) Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer 82:100–104

    Article  Google Scholar 

  147. Zhang C, Zhu P-C, Tan L et al (2015) Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment. Macromolecules 48(23):8509–8514

    Article  Google Scholar 

  148. Luo Y, Li B, Wang W et al (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24(42):5703–5707

    Article  Google Scholar 

  149. Saleh M, Lee HM, Kemp KC et al (2014) Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl Mater Interfaces 6(10):7325–7333

    Article  Google Scholar 

  150. Wang J, Yang JGW, Yi G et al (2015) Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion. Chem Commun 51(86):15708–15711

    Article  Google Scholar 

  151. Guan Z, Li B, Hai G et al (2014) A highly efficient catalyst for Suzuki-Miyaura coupling reaction of benzyl chloride under mild conditions. RSC Adv 4(69):36437–36443

    Article  Google Scholar 

  152. Song K, Liu P, Wang J et al (2015) Controlled synthesis of uniform palladium nanoparticles on novel micro-porous carbon as a recyclable heterogeneous catalyst for the Heck reaction. Dalton Trans 44(31):13906–13913

    Article  Google Scholar 

  153. Song K, Zou Z, Wang D et al (2016) Microporous organic polymers derived microporous carbon supported pd catalysts for oxygen reduction reaction: impact of framework and heteroatom. J Phys Chem C 120(4):2187–2197

    Article  Google Scholar 

  154. Li B, Guan Z, Wang W et al (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki-Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24(25):3390–3395

    Article  Google Scholar 

  155. Xu S, Song K, Li T et al (2015) Palladium catalyst coordinated in knitting N-heterocyclic carbene porous polymers for efficient Suzuki-Miyaura coupling reactions. J Mater Chem A 3(3):1272–1278

    Article  Google Scholar 

  156. Li R, Wang ZJ, Wang L et al (2016) Photocatalytic selective bromination of electron-rich aromatic compounds using microporous organic polymers with visible light. ACS Catal 6(2):1113–1121

    Article  Google Scholar 

  157. Jiang K, Fei T, Zhang T (2014) Humidity sensing properties of LiCl-loaded porous polymers with good stability and rapid response and recovery. Sens Actuators, B 199:1–6

    Article  Google Scholar 

  158. Jiang K, Kuang D, Fei T et al (2014) Preparation of lithium-modified porous polymer for enhanced humidity sensitive properties. Sens Actuators, B 203:752–758

    Article  Google Scholar 

  159. Yang X, Li B, Majeed I et al (2013) Magnetic microporous polymer nanoparticles. Polym Chem 4(5):1425–1429

    Google Scholar 

  160. Chinnappan A, Tamboli AH, Chung W-J et al (2016) Green synthesis, characterization and catalytic efficiency of hypercross-linked porous polymeric ionic liquid networks towards 4-nitrophenol reduction. Chem Eng J 285:554–561

    Article  Google Scholar 

  161. Ji G, Yang Z, Zhao Y et al (2015) Synthesis of metalloporphyrin-based conjugated microporous polymer spheres directed by bipyridine-type ligands. Chem Commun 51(34):7352–7355

    Article  Google Scholar 

  162. Xu Y, Nagai A, Jiang D (2013) Core-shell conjugated microporous polymers: a new strategy for exploring color-tunable and -controllable light emissions. Chem Commun 49(16):1591–1593

    Article  Google Scholar 

  163. Liu X, Xu Y, Jiang D (2012) Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J Am Chem Soc 134(21):8738–8741

    Article  Google Scholar 

  164. Zhang Y, Sigen A, Zou Y et al (2014) Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer. J Mater Chem A 2(33):13422–13430

    Google Scholar 

  165. Ding X, Han BH (2015) Copper phthalocyanine-based CMPs with various internal structures and functionalities. Chem Commun 51(64):12783–12786

    Article  Google Scholar 

  166. Chun J, Park JH, Kim J et al (2012) Tubular-shape evolution of microporous organic networks. Chem Mater 24(17):3458–3463

    Article  Google Scholar 

  167. Senkovskyy V, Senkovska I, Kiriy A (2012) Surface-initiated synthesis of conjugated microporous polymers: chain-growth Kumada catalyst-transfer polycondensation at work. ACS Macro Lett 1(4):494–498

    Article  Google Scholar 

  168. Yang RX, Wang TT, Deng WQ (2015) Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer. Sci Rep 5:10155

    Article  Google Scholar 

  169. Cheng G, Hasell T, Trewin A et al (2012) Soluble conjugated microporous polymers. Angew Chem Int Ed 51(51):12727–12731

    Article  Google Scholar 

  170. Chen Q, Luo M, Hammershoj P et al (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134(14):6084–6087

    Article  Google Scholar 

  171. Cho HC, Lee HS, Chun J et al (2011) Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem Commun 47(3):917–919

    Article  Google Scholar 

  172. Kang N, Park JH, Choi J et al (2012) Nanoparticulate iron oxide tubes from microporous organic nanotubes as stable anode materials for lithium ion batteries. Angew Chem Int Ed 51(27):6626–6630

    Article  Google Scholar 

  173. Laybourn A, Dawson R, Clowes R et al (2014) Network formation mechanisms in conjugated microporous polymers. Polym Chem 5(21):6325–6333

    Article  Google Scholar 

  174. Xu Y, Jiang D (2014) Structural insights into the functional origin of conjugated microporous polymers: geometry-management of porosity and electronic properties. Chem Commun 50(21):2781–2783

    Article  Google Scholar 

  175. Dawson R, Laybourn A, Khimyak YZ et al (2010) High surface area conjugated microporous polymers: the importance of reaction solvent choice. Macromolecules 43(20):8524–8530

    Article  Google Scholar 

  176. Tan D, Fan W, Xiong W et al (2012) Study on the morphologies of covalent organic microporous polymers: the role of reaction solvents. Macromol Chem Phys 213(14):1435–1440

    Article  Google Scholar 

  177. Schmidt J, Weber J, Epping JD et al (2009) Microporous conjugated poly(thienylene arylene) networks. Adv Mater 21(6):702–705

    Article  Google Scholar 

  178. Schmidt J, Werner M, Thomas A (2009) Conjugated microporous polymer networks via yamamoto polymerization. Macromolecules 42(13):4426–4429

    Article  Google Scholar 

  179. Jiang J-X, Su F, Niu H et al (2008) Conjugated microporous poly(phenylene butadiynylene)s. Chem Commun 4:486–488

    Article  Google Scholar 

  180. Schwab MG, Fassbender B, Spiess HW et al (2009) Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry. J Am Chem Soc 131(21):7216–7217

    Article  Google Scholar 

  181. Gu C, Chen Y, Zhang Z et al (2013) Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv Mater 25(25):3443–3448

    Article  Google Scholar 

  182. Wang X, Zhao Y, Wei L et al (2015) Nitrogen-rich conjugated microporous polymers: impact of building blocks on porosity and gas adsorption. J Mater Chem A 3(42):21185–21193

    Article  Google Scholar 

  183. Jiang J-X, Su F, Trewin A et al (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130(24):7710–7720

    Article  Google Scholar 

  184. Feng L-J, Chen Q, Zhu J-H et al (2014) Adsorption performance and catalytic activity of porous conjugated polyporphyrins via carbazole-based oxidative coupling polymerization. Polym Chem 5(8):3081–3088

    Article  Google Scholar 

  185. Liao Y, Weber J, Faul CFJ (2014) Conjugated microporous polytriphenylamine networks. Chem Commun 50(59):8002–8005

    Google Scholar 

  186. Hayashi S, Togawa Y, Ashida J et al (2016) Synthesis of π-conjugated porous polymers via direct arylation of fluoroarenes with three-arm triazine. Polymer 90:187–192

    Article  Google Scholar 

  187. Yoo J, Park N, Park JH et al (2015) Magnetically separable microporous fe-porphyrin networks for catalytic carbene insertion into N–H bonds. ACS Catal 5(1):350–355

    Article  Google Scholar 

  188. Xiao Z, Zhou Y, Xin X et al (2015) Iron(III) Porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red. Macromol Chem Phys 217(4):599–604

    Article  Google Scholar 

  189. Lu G, Yang H, Zhu Y et al (2015) Synthesis of a conjugated porous Co(ii) porphyrinylene-ethynylene framework through alkyne metathesis and its catalytic activity study. J Mater Chem A 3(9):4954–4959

    Article  Google Scholar 

  190. Chun J, Kang S, Kang N et al (2013) Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. J Mater Chem A 1(18):5517–5523

    Article  Google Scholar 

  191. Zhang H, Zhang Y, Gu C et al (2015) Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors. Adv Energy Mater 5(10):1402175

    Article  Google Scholar 

  192. Ding X, Han BH (2015) Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew Chem Int Ed 54(22):6536–6539

    Article  Google Scholar 

  193. Sheng X, Guo H, Qin Y et al (2015) A novel metalloporphyrin-based conjugated microporous polymer for capture and conversion of CO2. RSC Adv 5(40):31664–31669

    Article  Google Scholar 

  194. Jiang J-X, Wang C, Laybourn A et al (2011) Metal-organic conjugated microporous polymers. Angew Chem Int Ed 123(5):1104–1107

    Article  Google Scholar 

  195. Fischer S, Schmidt J, Strauch P et al (2013) An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions. Angew Chem Int Ed 52(46):12174–12178

    Article  Google Scholar 

  196. Xie Y, Wang TT, Liu XH et al (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960

    Article  Google Scholar 

  197. Gu C, Huang N, Chen Y et al (2015) Pi-conjugated microporous polymer films: designed synthesis, conducting properties, and photoenergy conversions. Angew Chem Int Ed 54(46):13594–13598

    Article  Google Scholar 

  198. Lee HS, Choi J, Jin J et al (2012) An organometallic approach for microporous organic network (MON)–Co3O4 composites: enhanced stability as anode materials for lithium ion batteries. Chem Commun 48(1):94–96

    Article  Google Scholar 

  199. Lindemann P, Schade A, Monnereau L et al (2016) Surface functionalization of conjugated microporous polymer thin films and nanomembranes using orthogonal chemistries. J Mater Chem A 4(18):6815–6818

    Article  Google Scholar 

  200. Liu J, Tobin JM, Xu Z et al (2015) Facile synthesis of a conjugated microporous polymeric monolith via copper-free Sonogashira-Hagihara cross-coupling in water under aerobic conditions. Polym Chem 6(41):7251–7255

    Article  Google Scholar 

  201. Urakami H, Zhang K, Vilela F (2013) Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chem Commun 49(23):2353–2355

    Article  Google Scholar 

  202. Ratvijitvech T, Dawson R, Laybourn A et al (2014) Post-synthetic modification of conjugated microporous polymers. Polymer 55(1):321–325

    Article  Google Scholar 

  203. Zhuang X, Zhang F, Wu D et al (2013) Two-dimensional sandwich-type, graphene-based conjugated microporous polymers. Angew Chem Int Ed 52(37):9668–9672

    Article  Google Scholar 

  204. Zhuang X, Gehrig D, Forler N et al (2015) Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Adv Mater 27(25):3789–3796

    Article  Google Scholar 

  205. Kang N, Park JH, Jin M et al (2013) Microporous organic network hollow spheres: useful templates for nanoparticulate CO3O4 hollow oxidation catalysts. J Am Chem Soc 135(51):19115–19118

    Article  Google Scholar 

  206. Ko JH, Kang N, Park N et al (2015) Hollow microporous organic networks bearing triphenylamines and anthraquinones: diffusion pathway effect in visible light-driven oxidative coupling of benzylamines. ACS Macro Lett 4(7):669–672

    Article  Google Scholar 

  207. Lim B, Jin J, Yoo J et al (2014) Fe3O4 nanosphere@microporous organic networks: enhanced anode performances in lithium ion batteries through carbonization. Chem Commun 50(57):7723–7726

    Article  Google Scholar 

  208. Kang S, Chun J, Park N et al (2015) Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chem Commun 51(59):11814–11817

    Article  Google Scholar 

  209. Chun J, Kang S, Park N et al (2014) Metal-organic framework@microporous organic network: hydrophobic adsorbents with a crystalline inner porosity. J Am Chem Soc 136(19):6786–6789

    Article  Google Scholar 

  210. Tan J, Wan J, Guo J et al (2015) Self-sacrificial template-induced modulation of conjugated microporous polymer microcapsules and shape-dependent enhanced photothermal efficiency for ablation of cancer cells. Chem Commun 51(98):17394–17397

    Article  Google Scholar 

  211. Zhang SC, Luo YL, Yang HW et al (2013) Functional oligo(vinyl acetate) bearing bipyridine moieties by RAFT polymerization and extraction of metal ions in supercritical carbon dioxide. Polym Chem 4(12):3507–3513

    Article  Google Scholar 

  212. Ma BC, Ghasimi S, Landfester K et al (2015) Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J Mater Chem A 3(31):16064–16071

    Article  Google Scholar 

  213. Kim M, Byeon M, Bae J-S et al (2011) Preparation of ultrathin films of molecular networks through layer-by-layer crosslinking polymerization of tetrafunctional monomers. Macromolecules 44(18):7092–7095

    Article  Google Scholar 

  214. Lindemann P, Tsotsalas M, Shishatskiy S et al (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26(24):7189–7193

    Article  Google Scholar 

  215. Wu X, Li H, Xu Y et al (2014) Thin film fabricated from solution-dispersible porous hyperbranched conjugated polymer nanoparticles without surfactants. Nanoscale 6(4):2375–2380

    Article  Google Scholar 

  216. Gu C, Chen Y, Zhang Z et al (2014) Achieving high efficiency of PTB7-based polymer solar cells via integrated optimization of both anode and cathode interlayers. Adv Energy Mater 4(8):1301771

    Article  Google Scholar 

  217. Gu C, Huang N, Gao J et al (2014) Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo- and biosensing. Angew Chem Int Ed 53(19):4850–4855

    Article  Google Scholar 

  218. Deng S, Zhi J, Zhang X et al (2014) Size-controlled synthesis of conjugated polymer nanoparticles in confined nanoreactors. Angew Chem Int Ed 53(51):14144–14148

    Article  Google Scholar 

  219. Huang B, Zhao P, Dai Y et al (2016) Size-controlled synthesis of soluble-conjugated microporous polymer nanoparticles through sonogashira polycondensation in confined nanoreactors. J Polym Sci Pol Chem 54(15):2285–2290

    Article  Google Scholar 

  220. Du R, Zhang N, Xu H et al (2014) CMP aerogels: ultrahigh-surface-area carbon-based monolithic materials with superb sorption performance. Adv Mater 26(47):8053–8058

    Article  Google Scholar 

  221. Wang ZJ, Landfester K, Zhang KAI (2014) Hierarchically porous π-conjugated polyHIPE as a heterogeneous photoinitiator for free radical polymerization under visible light. Polym Chem 5(11):3559–3562

    Article  Google Scholar 

  222. Liu X, Xu Y, Guo Z et al (2013) Super absorbent conjugated microporous polymers: a synergistic structural effect on the exceptional uptake of amines. Chem Commun 49(31):3233–3235

    Article  Google Scholar 

  223. Chen Y, Sun H, Yang R et al (2015) Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake. J Mater Chem A 3(1):87–91

    Article  Google Scholar 

  224. Wang J, Wang G, Wang W et al (2014) Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds. J Mater Chem A 2(34):14028–14037

    Article  Google Scholar 

  225. Du R, Zheng Z, Mao N et al (2015) Fluorosurfactants-directed preparation of homogeneous and hierarchical-porosity CMP aerogels for gas sorption and oil cleanup. Adv Sci 2(1–2):1400006

    Google Scholar 

  226. Chen Q, Liu DP, Luo M et al (2014) Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake. Small 10(2):308–315

    Article  Google Scholar 

  227. Wang J, Senkovska I, Oschatz M et al (2013) Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture. J Mater Chem A 1(36):10951–10961

    Article  Google Scholar 

  228. Song W-C, Xu X-K, Chen Q et al (2013) Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake. Polym Chem 4(17):4690–4696

    Article  Google Scholar 

  229. Qiao S, Wang T, Huang W et al (2016) Dendrimer-like conjugated microporous polymers. Polym Chem 7(6):1281–1289

    Google Scholar 

  230. Fischer S, Schimanowitz A, Dawson R et al (2014) Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO2-storage ability. J Mater Chem A 2(30):11825–11829

    Article  Google Scholar 

  231. Zhang S, Huang W, Hu P et al (2015) Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage. J Mater Chem A 3(5):1896–1901

    Article  Google Scholar 

  232. Xu F, Chen X, Tang Z et al (2014) Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chem Commun 50(37):4788–4790

    Article  Google Scholar 

  233. Yuan K, Guo-Wang P, Hu T et al (2015) Nanofibrous and graphene-templated conjugated microporous polymer materials for flexible chemosensors and supercapacitors. Chem Mater 27(21):7403–7411

    Article  Google Scholar 

  234. To JWF, Chen Z, Yao H et al (2015) Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent Sci 1(2):68–76

    Article  Google Scholar 

  235. Zhang K, Kopetzki D, Seeberger PH et al (2013) Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew Chem Int Ed 52(5):1432–1436

    Article  Google Scholar 

  236. Wang ZJ, Ghasimi S, Landfester K et al (2015) Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light. Adv Mater 27(40):6265–6270

    Article  Google Scholar 

  237. Wang ZJ, Ghasimi S, Landfester K et al (2014) Highly porous conjugated polymers for selective oxidation of organic sulfides under visible light. Chem Commun 50(60):8177–8180

    Article  Google Scholar 

  238. Luo J, Zhang X, Zhang J (2015) Carbazolic porous organic framework as an efficient, metal-free visible-light photocatalyst for organic synthesis. ACS Catal 5(4):2250–2254

    Article  Google Scholar 

  239. Wang ZJ, Ghasimi S, Landfester K et al (2015) Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem Mater 27(6):1921–1924

    Article  Google Scholar 

  240. Wang X, S-m Lu, Li J et al (2015) Conjugated microporous polymers with chiral BINAP ligand built-in as efficient catalysts for asymmetric hydrogenation. Catal Sci Technol 5(5):2585–2589

    Article  Google Scholar 

  241. Wu X, Li H, Xu B et al (2014) Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polym Chem 5(15):4521–4525

    Article  Google Scholar 

  242. Bonillo B, Sprick RS, Cooper AI (2016) Tuning photophysical properties in conjugated microporous polymers by co-monomer doping strategies. Chem Mater 28(10):3469–3480

    Article  Google Scholar 

  243. Jiang J-X, Trewin A, Adams DJ et al (2011) Band gap engineering in fluorescent conjugated microporous polymers. Chem Sci 2(9):1777–1781

    Article  Google Scholar 

  244. Ma H, Li F, Li P et al (2016) A dendrimer-based electropolymerized microporous film: multifunctional, reversible, and highly sensitive fluorescent probe. Adv Funct Mater 26(12):2025–2031

    Article  Google Scholar 

  245. Jin J, Kim B, Park N et al (2014) Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water. Chem Commun 50(94):14885–14888

    Article  Google Scholar 

  246. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779

    Article  Google Scholar 

  247. Cameron NR, Sherrington DC (1996) High internal phase emulsions (HIPEs)-structure, properties and use in polymer preparation. Biopolymers liquid crystalline polymers phase emulsion. Springer Berlin Heidelberg, pp 163–214

    Google Scholar 

  248. McKeown NB, Budd PM, Msayib KJ et al (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11(9):2610–2620

    Article  Google Scholar 

  249. Patrick J, WaIker A (eds) (1995) Porosity in carbons. Edward Arnold, London

    Google Scholar 

  250. Kaneko K, Ishii C, Ruike M et al (1992) Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30(7):1075–1088

    Article  Google Scholar 

  251. McKeown NB (2000) Phthalocyanine-containing polymers. J Mater Chem 10(9):1979–1995

    Google Scholar 

  252. McKeown NB, Makhseed S, Budd PM (2002) Phthalocyanine-based nanoporous network polymers. Chem Commun 23:2780–2781

    Article  Google Scholar 

  253. McKeown NB, Hanif S, Msayib K et al (2002) Porphyrin-based nanoporous network polymers. Chem Commun 23:2782–2783

    Article  Google Scholar 

  254. Budd PM, Ghanem B, Msayib K et al (2003) A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. J Mater Chem 13(11):2721–2726

    Article  Google Scholar 

  255. Ghanem BS, Msayib KJ, McKeown NB et al (2007) A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem Commun 1:67–69

    Article  Google Scholar 

  256. Ghanem BS, Hashem M, Harris KDM et al (2010) Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromolecules 43(12):5287–5294

    Article  Google Scholar 

  257. McKeown NB, Gahnem B, Msayib KJ et al (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed 45(11):1804–1807

    Article  Google Scholar 

  258. Ghanem BS, McKeown NB, Budd PM et al (2009) Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides. Macromolecules 42(20):7881–7888

    Article  Google Scholar 

  259. Short R, Carta M, Bezzu CG et al (2011) Hexaphenylbenzene-based polymers of intrinsic microporosity. Chem Commun 47(24):6822–6824

    Article  Google Scholar 

  260. Patel HA, Yavuz CT (2012) Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem Commun 48(80):9989–9991

    Article  Google Scholar 

  261. Zhang P, Jiang X, Wan S et al (2015) Advancing polymers of intrinsic microporosity by mechanochemistry. J Mater Chem A 3(13):6739–6741

    Article  Google Scholar 

  262. Nagai K, Masuda T, Nakagawa T et al (2001) Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions. Prog Polym Sci 26(5):721–798

    Article  Google Scholar 

  263. Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15(20):1977–1986

    Article  Google Scholar 

  264. Carta M, Malpass-Evans R, Croad M et al (2013) An efficient polymer molecular sieve for membrane gas separations. Science 339(6117):303–307

    Article  Google Scholar 

  265. Mason CR, Maynard-Atem L, Heard KWJ et al (2014) Enhancement of CO2 affinity in a polymer of intrinsic microporosity by amine modification. Macromolecules 47(3):1021–1029

    Article  Google Scholar 

  266. Hart KE, Colina CM (2014) Ionomers of intrinsic microporosity: in silico development of ionic-functionalized gas-separation membranes. Langmuir 30(40):12039–12048

    Article  Google Scholar 

  267. Shamsipur H, Dawood BA, Budd PM et al (2014) Thermally rearrangeable PIM-polyimides for gas separation membranes. Macromolecules 47(16):5595–5606

    Article  Google Scholar 

  268. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663

    Article  Google Scholar 

  269. Fang W, Zhang L, Jiang J (2010) Polymers of intrinsic microporosity for gas permeation: a molecular simulation study. Mol Simul 36(12):992–1003

    Article  Google Scholar 

  270. Fritsch D, Merten P, Heinrich K et al (2012) High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). J Membr Sci 401:222–231

    Article  Google Scholar 

  271. Anokhina T, Yushkin A, Budd P et al (2015) Application of PIM-1 for solvent swing adsorption and solvent recovery by nanofiltration. Sep Purif Technol 156:683–690

    Article  Google Scholar 

  272. Swaidan R, Ghanem B, Litwiller E et al (2015) Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 48(18):6553–6561

    Article  Google Scholar 

  273. Kelman SD, Rowe BW, Bielawski CW et al (2008) Crosslinking poly[1-(trimethylsilyl)-1-propyne] and its effect on physical stability. J Membr Sci 320(1–2):123–134

    Article  Google Scholar 

  274. Li FY, Xiao Y, Chung T-S et al (2012) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 45(3):1427–1437

    Article  Google Scholar 

  275. Shao L, Samseth J, Hägg MB (2007) Effect of plasma treatment on the gas permeability of poly (4-methyl-2-pentyne) membranes. Plasma Processes Polym 4(9):823–831

    Article  Google Scholar 

  276. Song Q, Cao S, Pritchard RH et al (2014) Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat Commun 5:4813

    Article  Google Scholar 

  277. Song Q, Cao S, Pritchard RH et al (2016) Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. J Mater Chem A 4(1):270–279

    Article  Google Scholar 

  278. Shin Y, Prestat E, Zhou K-G et al (2016) Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Carbon 102:357–366

    Article  Google Scholar 

  279. Mitra T, Bhavsar RS, Adams DJ et al (2016) PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chem Commun 52(32):5581–5584

    Article  Google Scholar 

  280. Carta M, Croad M, Bugler K et al (2014) Heterogeneous organocatalysts composed of microporous polymer networks assembled by Troger’s base formation. Polym Chem 5(18):5262–5266

    Article  Google Scholar 

  281. Ahn SD, Kolodziej A, Malpass-Evans R et al (2016) Polymer of intrinsic microporosity induces host-guest substrate selectivity in heterogeneous 4-benzoyloxy-TEMPO-catalysed alcohol oxidations. Electrocatalysis 7(1):70–78

    Article  Google Scholar 

  282. Weng X, Baez JE, Khiterer M et al (2015) Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew Chem Int Ed 54(38):11214–11218

    Article  Google Scholar 

  283. Rong Y, He D, Sanchez-Fernandez A et al (2015) Intrinsically microporous polymer retains porosity in vacuum thermolysis to electroactive heterocarbon. Langmuir 31(44):12300–12306

    Article  Google Scholar 

  284. Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55(1):304–320

    Article  Google Scholar 

  285. Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39(1):199–234

    Article  Google Scholar 

  286. Herbst A, Khutia A, Janiak C (2014) Brønsted instead of lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg Chem 53(14):7319–7333

    Article  Google Scholar 

  287. Wickenheisser M, Janiak C (2015) Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater 204:242–250

    Article  Google Scholar 

  288. Zhu Y, Hua Y, Zhang S et al (2015) Open-cell macroporous bead: a novel polymeric support for heterogeneous photocatalytic reactions. J Polym Res 22(4):1–6

    Article  Google Scholar 

  289. Wickenheisser M, Paul T, Janiak C (2016) Prospects of monolithic MIL-MOF@poly(NIPAM)HIPE composites as water sorption materials. Microporous Mesoporous Mater 220:258–269

    Article  Google Scholar 

  290. Yu S, Tan H, Wang J et al (2015) High porosity supermacroporous polystyrene materials with excellent oil-water separation and gas permeability properties. ACS Appl Mater Interfaces 7(12):6745–6753

    Article  Google Scholar 

  291. Tebboth M, Kogelbauer A, Bismarck A (2015) Liquid-liquid extraction within emulsion templated macroporous polymers. Ind Eng Chem Res 54(29):7284–7291

    Article  Google Scholar 

  292. Luo W, Zhang S, Li P et al (2015) Surfactant-free CO2-in-water emulsion-templated poly (vinyl alcohol) (PVA) hydrogels. Polymer 61:183–191

    Article  Google Scholar 

  293. Luo W, Xu R, Liu Y et al (2015) Emulsion-templated poly(acrylamide)s by using polyvinyl alcohol (PVA) stabilized CO2-in-water emulsions and their applications in tissue engineering scaffolds. RSC Adv 5(112):92017–92024

    Article  Google Scholar 

  294. Zhang S, Luo W, Yan W et al (2014) Synthesis of a CO2-philic poly(vinyl acetate)-based cationic amphiphilic surfactant by RAFT/ATRP and its application in preparing monolithic materials. Green Chem 16(9):4408–4416

    Article  Google Scholar 

  295. Hayward AS, Sano N, Przyborski SA et al (2013) Acrylic-acid-functionalized polyHIPE scaffolds for use in 3D cell culture. Macromol Rapid Commun 34(23–24):1844–1849

    Article  Google Scholar 

  296. Prieto EM, Page JM, Harmata AJ et al (2014) Injectable foams for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(2):136–154

    Article  Google Scholar 

  297. Qu Q, Pan J, Yin Y et al (2015) Synthesis of macroporous polymer foams via pickering high internal phase emulsions for highly efficient 2,4,5-trichlorophenol removal. J Appl Polym Sci 132(6):41430

    Article  Google Scholar 

  298. Liang J, Wu Y, Deng X et al (2015) Optically active porous materials constructed by chirally helical substituted polyacetylene through a high internal phase emulsion approach and the application in enantioselective crystallization. ACS Macro Lett 4(10):1179–1183

    Article  Google Scholar 

  299. Sevsek U, Brus J, Jerabek K et al (2014) Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. Polymer 55(1):410–415

    Article  Google Scholar 

  300. Liliang O, Rui Y, Xi C et al (2015) 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication 7(1):015010

    Article  Google Scholar 

  301. Wu Z, Su X, Xu Y et al (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474

    Article  Google Scholar 

  302. Perez-Garcia MG, Carranza A, Puig JE et al (2015) Porous monoliths synthesized via polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs. RSC Adv 5(30):23255–23260

    Article  Google Scholar 

  303. Carranza A, Pojman JA, Mota-Morales JD (2014) Deep-eutectic solvents as a support in the nonaqueous synthesis of macroporous poly(HIPEs). RSC Adv 4(78):41584–41587

    Article  Google Scholar 

  304. Tebboth M, Kogelbauer A, Bismarck A (2015) Highly permeable macroporous polymers via controlled agitation of emulsion templates. Chem Eng Sci 137:786–795

    Article  Google Scholar 

  305. Menner A, Bismarck A (2006) New evidence for the Mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure. Macromol Symp 242(1):19–24

    Article  Google Scholar 

  306. Mathieu K, Jerome C, Debuigne A (2015) Influence of the macromolecular surfactant features and reactivity on morphology and surface properties of emulsion-templated porous polymers. Macromolecules 48(18):6489–6498

    Article  Google Scholar 

  307. Huang X, Yang Y, Shi J et al (2015) High-internal-phase emulsion tailoring polymer amphiphilicity towards an efficient NIR-sensitive bacteria filter. Small 11(37):4876–4883

    Article  Google Scholar 

  308. Pan J, Zeng J, Cao Q et al (2016) Hierarchical macro and mesoporous foams synthesized by HIPEs template and interface grafted route for simultaneous removal of lambda-cyhalothrin and copper ions. Chem Eng J 284:1361–1372

    Article  Google Scholar 

  309. Qiu H, Che S (2011) Chiral mesoporous silica: chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chem Soc Rev 40(3):1259–1268

    Article  Google Scholar 

  310. Hayward AS, Eissa AM, Maltman DJ et al (2013) Galactose-functionalized polyHIPE scaffolds for use in routine three dimensional culture of mammalian hepatocytes. Biomacromol 14(12):4271–4277

    Article  Google Scholar 

  311. Oh BHL, Bismarck A, Chan-Park MB (2015) Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol Rapid Commun 36(4):364–372

    Article  Google Scholar 

  312. Sarbu T, Styranec T, Beckman EJ (2000) Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures. Nature 405(6783):165–168

    Article  Google Scholar 

  313. Eastoe J, Paul A, Nave S et al (2001) Micellization of hydrocarbon surfactants in supercritical carbon dioxide. J Am Chem Soc 123(5):988–989

    Article  Google Scholar 

  314. Boyère C, Favrelle A, Léonard AF et al (2013) Macroporous poly (ionic liquid) and poly (acrylamide) monoliths from CO2-in-water emulsion templates stabilized by sugar-based surfactants. J Mater Chem A 1(29):8479–8487

    Article  Google Scholar 

  315. Butler R, Davies CM, Cooper AI (2001) Emulsion templating using high internal phase supercritical fluid emulsions. Adv Mater 13(19):1459–1463

    Article  Google Scholar 

  316. Palocci C, Barbetta A, La Grotta A et al (2007) Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir 23(15):8243–8251

    Article  Google Scholar 

  317. da Rocha SRP, Harrison KL, Johnston KP (1999) Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide. Langmuir 15(2):419–428

    Article  Google Scholar 

  318. Tan B, Cooper AI (2005) Functional Oligo(vinyl acetate) CO2-philes for solubilization and emulsification. J Am Chem Soc 127(25):8938–8939

    Article  Google Scholar 

  319. Chen K, Grant N, Liang L et al (2010) Synthesis of CO2-philic Xanthate-Oligo(vinyl acetate)-based hydrocarbon surfactants by RAFT polymerization and their applications on preparation of emulsion-templated materials. Macromolecules 43(22):9355–9364

    Article  Google Scholar 

  320. Li X, Sun G, Li Y et al (2014) Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir 30(10):2676–2683

    Article  Google Scholar 

  321. Kovacic S, Matsko NB, Ferk G et al (2013) Macroporous poly(dicyclopentadiene) gamma Fe2O3/Fe3O4 nanocomposite foams by high internal phase emulsion templating. J Mater Chem A 1(27):7971–7978

    Article  Google Scholar 

  322. Yi W, Wu H, Wang H et al (2016) Interconnectivity of macroporous hydrogels prepared via graphene oxide-stabilized pickering high internal phase emulsions. Langmuir 32(4):982–990

    Article  Google Scholar 

  323. Yang Y, Wei Z, Wang C et al (2013) Lignin-based pickering HIPEs for macroporous foams and their enhanced adsorption of copper(II) ions. Chem Commun 49(64):7144–7146

    Article  Google Scholar 

  324. Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer? Angew Chem Int Ed 45(5):773–776

    Article  Google Scholar 

  325. Cohen N, Samoocha DC, David D et al (2013) Carbon nanotubes in emulsion-templated porous polymers: polymer nanoparticles, sulfonation, and conductivity. J Polym Sci Pol Chem 51(20):4369–4377

    Article  Google Scholar 

  326. Mert EH, Yildirim H, Uzumcu AT et al (2013) Synthesis and characterization of magnetic polyHIPEs with humic acid surface modified magnetic iron oxide nanoparticles. React Funct Polym 73(1):175–181

    Article  Google Scholar 

  327. Ikem VO, Menner A, Bismarck A (2008) High internal phase emulsions stabilized solely by functionalized silica particles. Angew Chem Int Ed 47(43):8277–8279

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the program for New Century Excellent Talents in University (NCET-10-0389), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) and National Natural Science Foundation of China (Nos. 51173058/51273074/21474033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bien Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tan, L., Wang, K., Li, Q., Yang, Y., Liu, Y., Tan, B. (2017). Organic Porous Polymer Materials: Design, Preparation, and Applications. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_4

Download citation

Publish with us

Policies and ethics