Skip to main content

Nanopatterning of Functional Metallopolymers via Top-Down Approach

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Putting metal into macromolecules has drawn immense attention in materials science due to the tunable features and large spectrum of potential applications of these metallopolymers. However, a precise control in metallopolymer nanostructure is always required for tailoring the final application. A variety of nanopatterning methods has been reported in recent years and can be simply classified into either bottom-up or top-down approaches. This chapter will be focused on the general strategy for the fabrication of well-defined nanostructures of metal-containing polymers by using top-down techniques with selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arimoto FS, Haven AC (1955) Derivatives of dicyclopentadienyliron. J Am Chem Soc 77(23):6295–6297

    Article  Google Scholar 

  2. Pittman CU, Lai JC, Vanderpool DP et al (1970) Polymerization of ferrocenylmethyl acrylate and ferrocenylmethyl methacrylate. Characterization of their polymers and their polymeric ferricinium salts. Extension to poly(ferrocenylethylene). Macromolecules 3(6):746–754

    Article  Google Scholar 

  3. Takahashi S, Murata E, Kariya M et al (1979) A new liquid-crystalline material. Transition metal-poly(yne) polymers. Macromolecules 12(5):1016–1018

    Article  Google Scholar 

  4. Abd-El-Aziz AS, Manners I (2007) Frontiers in transition metal-containing polymers. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  5. Whittell GR, Manners I (2007) Metallopolymers: new multifunctional materials. Adv Mater 19(21):3439–3468

    Article  Google Scholar 

  6. Abd-El-Aziz AS, Shipman PO, Boden BN et al (2010) Synthetic methodologies and properties of organometallic and coordination macromolecules. Prog Polym Sci 35:714–836

    Article  Google Scholar 

  7. Hardy CG, Zhang J, Yan Y et al (2014) Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog Polym Sci 39(10):1742–1796

    Article  Google Scholar 

  8. Zhou J, Whittell GR, Manners I (2014) Metalloblock copolymers: new functional nanomaterials. Macromolecules 47(11):3529–3543

    Article  Google Scholar 

  9. Ho C-L, Wong W-Y (2011) Metal-containing polymers: facile tuning of photophysical traits and emerging applications in organic electronics and photonics. Coord Chem Rev 255(21–22):2469–2502

    Article  Google Scholar 

  10. Happ B, Winter A, Hager MD et al (2012) Photogenerated avenues in macromolecules containing Re(I), Ru(II), Os(II), and Ir(III) metal complexes of pyridine-based ligands. Chem Soc Rev 41(6):2222–2255

    Article  Google Scholar 

  11. Xiang J, Ho C-L, Wong W-Y (2015) Metallopolymers for energy production, storage and conservation. Polym Chem 6(39):6905–6930

    Article  Google Scholar 

  12. Feng X, Zhang K, Hempenius MA et al (2015) Organometallic polymers for electrode decoration in sensing applications. RSC Adv 5(129):106355–106376

    Article  Google Scholar 

  13. MacLachlan MJ, Ginzburg M, Coombs N et al (2000) Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science 287(5457):1460–1463

    Article  Google Scholar 

  14. Cheng JY, Ross CA, Chan VZH et al (2001) Formation of a cobalt magnetic dot array via block copolymer lithography. Adv Mater 13(15):1174–1178

    Article  Google Scholar 

  15. Whittell GR, Hager MD, Schubert US et al (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10(3):176–188

    Article  Google Scholar 

  16. Al-Badri ZM, Maddikeri RR, Zha Y et al (2011) Room temperature magnetic materials from nanostructured diblock copolymers. Nat Commun 2:482

    Article  Google Scholar 

  17. Yan Y, Zhang J, Ren L et al (2016) Metal-containing and related polymers for biomedical applications. Chem Soc Rev 45:5232

    Article  Google Scholar 

  18. Bode S, Zedler L, Schacher FH et al (2013) Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv Mater 25(11):1634–1638

    Article  Google Scholar 

  19. Sandmann B, Happ B, Kupfer S et al (2015) The self-healing potential of triazole–pyridine-based metallopolymers. Macromol Rapid Commun 36(7):604–609

    Article  Google Scholar 

  20. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  Google Scholar 

  21. Ramanathan M, Darling SB (2013) Nanofabrication with metallopolymers-recent developments and future perspectives. Polym Int 62(8):1123–1134

    Article  Google Scholar 

  22. MacLachlan MJ, Aroca P, Coombs N et al (1998) Ring-opening polymerization of a [1] silaferrocenophane within the channels of mesoporous silica: Poly(ferrocenylsilane)-MCM-41 precursors to magnetic iron nanostructures. Adv Mater 10(2):144–149

    Article  Google Scholar 

  23. MacLachlan MJ, Ginzburg M, Coombs N et al (2000) Superparamagnetic ceramic nanocomposites: synthesis and pyrolysis of ring-opened poly(ferrocenylsilanes) inside periodic mesoporous silica. J Am Chem Soc 122(16):3878–3891

    Article  Google Scholar 

  24. Ginzburg-Margau M, Fournier-Bidoz S, Coombs N et al (2002) Formation of organometallic polymer nanorods using a nanoporous alumina template and the conversion to magnetic ceramic nanorods. Chem Commun 24:3022–3023

    Article  Google Scholar 

  25. Liu K, Fournier-Bidoz S, Ozin GA et al (2009) Highly ordered magnetic ceramic nanorod arrays from a polyferrocenylsilane by nanoimprint lithography with anodic aluminum oxide templates. Chem Mater 21(9):1781–1783

    Article  Google Scholar 

  26. Clendenning SB, Aouba S, Rayat MS et al (2004) Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists. Adv Mater 16(3):215–219

    Article  Google Scholar 

  27. Greenberg S, Clendenning SB, Liu K et al (2005) Synthesis and lithographic patterning of polycarbosilanes with pendant cobalt carbonyl clusters. Macromolecules 38(6):2023–2026

    Article  Google Scholar 

  28. Chan WY, Clendenning SB, Berenbaum A et al (2005) Highly metallized polymers: synthesis, characterization, and lithographic patterning of polyferrocenylsilanes with pendant cobalt, molybdenum, and nickel cluster substituents. J Am Chem Soc 127(6):1765–1772

    Article  Google Scholar 

  29. Liu K, Ho C-L, Aouba S et al (2008) Synthesis and lithographic patterning of FePt nanoparticles using a bimetallic metallopolyyne precursor. Angew Chem Int Ed 47(7):1255–1259

    Article  Google Scholar 

  30. Cha S-H, Huh G, Lee J-C (2014) Preparation of copper containing methacrylic polymers and their application for the copper patterns. J Ind Eng Chem 20(2):682–688

    Article  Google Scholar 

  31. Cheng AY, Clendenning SB, Yang G et al (2004) UV photopatterning of a highly metallized, cluster-containing poly(ferrocenylsilane). Chem Commun 7:780–781

    Article  Google Scholar 

  32. Satyanarayana VSV, Singh V, Kalyani V et al (2014) A hybrid polymeric material bearing a ferrocene-based pendant organometallic functionality: synthesis and applications in nanopatterning using EUV lithography. RSC Adv 4(104):59817–59820

    Article  Google Scholar 

  33. Acikgoz C, Ling XY, Phang IY et al (2009) Fabrication of freestanding nanoporous polyethersulfone membranes using organometallic polymer resists patterned by nanosphere lithography. Adv Mater 21(20):2064–2067

    Article  Google Scholar 

  34. Ling XY, Acikgoz C, Phang IY et al (2010) 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask. Nanoscale 2(8):1455–1460

    Article  Google Scholar 

  35. Fritea L, Haddache F, Reuillard B et al (2014) Electrochemical nanopatterning of an electrogenerated photosensitive poly-[trisbipyridinyl-pyrrole ruthenium(II)] metallopolymer by nanosphere lithography. Electrochem Commun 46:75–78

    Article  Google Scholar 

  36. Ginzburg M, MacLachlan MJ, Yang SM et al (2002) Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micromolding inside silicon wafers. J Am Chem Soc 124(11):2625–2639

    Article  Google Scholar 

  37. Acikgoz C, Vratzov B, Hempenius MA et al (2009) Nanoscale patterning by UV nanoimprint lithography using an organometallic resist. ACS Appl Mater Interfaces 1(11):2645–2650

    Article  Google Scholar 

  38. Hu W, Sarveswaran K, Lieberman M et al (2004) Sub-10 nm electron beam lithography using cold development of poly(methylacrylate). J Vac Sci Technol B 22(4):1711–1716

    Article  Google Scholar 

  39. Manfrinato VR, Zhang L, Su D et al (2013) Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett 13(4):1555–1558

    Article  Google Scholar 

  40. Acikgoz C, Hempenius MA, Huskens J et al (2011) Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur Polym J 47(11):2033–2052

    Article  Google Scholar 

  41. Chen Y (2015) Nanofabrication by electron beam lithography and its applications: a review. Microelectron Eng 135:57–72

    Article  Google Scholar 

  42. Lee SW, Sankaran RM (2013) Direct writing via electron-driven reactions. Mater Today 16(4):117–122

    Article  Google Scholar 

  43. Johnson BFG, Sanderson KM, Shephard DS et al (2000) Electron-beam induced formation of nanoparticle chains and wires from a ruthenium cluster polymer. Chem Commun 14:1317–1318

    Article  Google Scholar 

  44. Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96(2):248–270

    Article  Google Scholar 

  45. Swanson SA, Fleming WW, Hofer DC (1992) Acetylene-terminated polyimide cure studies using carbon-13 magic-angle spinning NMR on isotopically labeled samples. Macromolecules 25(2):582–588

    Article  Google Scholar 

  46. Masuda T, Kuwane Y, Yamamoto K et al (1980) Polymerization of acetylene derivatives induced by UV irradiation via metal carbonyls. Polym Bull 2(12):823–827

    Article  Google Scholar 

  47. Masuda T, Yamamoto K, Higashimura T (1982) Polymerization of phenylacetylene induced by uv irradiation of group 6 transition metal carbonyls. Polymer 23(11):1663–1666

    Article  Google Scholar 

  48. Landon SJ, Shulman PM, Geoffroy GL (1985) Photoassisted polymerization of terminal alkynes by W(CO)6 involving catalyst generation by an alkyne to vinylidene ligand rearrangement. J Am Chem Soc 107(23):6739–6740

    Article  Google Scholar 

  49. Badarau C, Wang ZY (2003) Photoinitiated cross-linking of acetylene-containing polymers in the presence of tungsten hexacarbonyl. Macromolecules 36(19):6959–6961

    Article  Google Scholar 

  50. Colson P, Henrist C, Cloots R (2013) Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J Nanomater 2013:19

    Article  Google Scholar 

  51. Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12(5):1303–1311

    Article  Google Scholar 

  52. Nagao D, Kameyama R, Kobayashi Y et al (2007) Multiformity of particle arrays assembled with a simple dip-coating. Colloids Surf A 311(1–3):26–31

    Article  Google Scholar 

  53. Deckman HW, Dunsmuir JH (1982) Natural lithography. Appl Phys Lett 41(4):377–379

    Article  Google Scholar 

  54. Hulteen JC, Van Duyne RP (1995) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A 13(3):1553–1558

    Article  Google Scholar 

  55. Rybczynski J, Ebels U, Giersig M (2003) Large-scale, 2D arrays of magnetic nanoparticles. Colloids Surf A 219(1–3):1–6

    Article  Google Scholar 

  56. Ruan W-D, Lü Z-C, Ji N et al (2007) Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir–Blodgett technique. Chem Res Chin U 23(6):712–714

    Article  Google Scholar 

  57. Goldenberg LM, Wagner J, Stumpe J et al (2002) Simple method for the preparation of colloidal particle monolayers at the water/alkane interface. Langmuir 18(14):5627–5629

    Article  Google Scholar 

  58. Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9(12):3408–3413

    Article  Google Scholar 

  59. Rogach AL, Kotov NA, Koktysh DS et al (2000) Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals. Chem Mater 12(9):2721–2726

    Article  Google Scholar 

  60. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    Google Scholar 

  61. Lammertink RGH, Hempenius MA, Chan VZH et al (2001) Poly(ferrocenyldimethylsilanes) for reactive ion etch barrier applications. Chem Mater 13(2):429–434

    Article  Google Scholar 

  62. Xin JZ, Lee FK, Li SYW et al (2011) Transfer imprint lithography using a soft mold. Microelectron Eng 88(8):2632–2635

    Article  Google Scholar 

  63. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67(21):3114–3116

    Article  Google Scholar 

  64. Kooy N, Mohamed K, Pin LT et al (2014) A review of roll-to-roll nanoimprint lithography. Nanoscale Res Lett 9(1):1–13

    Article  Google Scholar 

  65. Dauksher WJ, Le NV, Ainley ES et al (2006) Nano-imprint lithography: templates, imprinting and wafer pattern transfer. Microelectron Eng 83(4–9):929–932

    Article  Google Scholar 

  66. Li G, Dong Q, Xin J et al (2013) Patterning micro- and nano-structured FePt by direct imprint lithography. Microelectron Eng 110:192–197

    Article  Google Scholar 

  67. Dong Q, Li G, Ho C-L et al (2012) A polyferroplatinyne precursor for the rapid fabrication of L10-FePt-type bit patterned media by nanoimprint lithography. Adv Mater 24(8):1034–1040

    Article  Google Scholar 

  68. Dong Q, Li G, Ho C-L et al (2014) Facile generation of L10-FePt nanodot arrays from a nanopatterned metallopolymer blend of iron and platinum homopolymers. Adv Funct Mater 24(6):857–862

    Article  Google Scholar 

  69. Dong Q, Qu W, Liang W et al (2016) Metallopolymer precursors to L10-CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application. Nanoscale 8(13):7068–7074

    Article  Google Scholar 

Download references

Acknowledgements

C.-L. Ho thanks Hong Kong Research Grants Council (HKBU 12317216), the Hong Kong Baptist University (FRG1/15-16/043 and FRG2/15-16/074) and the National Natural Science Foundation of China (Grant No. 21504074) for the financial support. W.-Y. Wong acknowledges the financial support from the National Natural Science Foundation of China (51373145), Hong Kong Research Grants Council (HKBU 12302114), Areas of Excellence Scheme, University Grants Committee of HKSAR (AoE/P-03/08) and the Hong Kong Polytechnic University (1-ZE1C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheuk-Lam Ho or Wai-Yeung Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yiu, SC., Ho, CL., Wong, WY. (2017). Nanopatterning of Functional Metallopolymers via Top-Down Approach. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_3

Download citation

Publish with us

Policies and ethics