Skip to main content

Effects of Polymer-Packing Orientation on the Performances of Thin Film Transistors and Photovoltaic Cells

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Controlling the solid-state orientation of semiconducting polymers has been a challenging topic in order to achieve high mobilities in organic field-effect transistors and good power conversion efficiencies in organic photovoltaics. In this chapter, we focus on how the orientation of semiconducting polymer backbones is influenced by the chemical structures, such as backbone regularity, polymer main chain geometry, backbone coplanarity, molecular weight, heteroatoms, and side chains. A detailed analysis of the polymer thin films has been conducted by various techniques, especially including two-dimensional grazing incidence X-ray diffraction measurements, and there is now a clear correlation between the polymer orientation and electronic device performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Yan H, Chen Z, Zheng Y et al (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457(7230):679–686; (b) Arias AC, MacKenzie JD, McCulloch I et al (2010) Materials and applications for large area electronics solution-based approaches. Chem Rev 110(1):3–24; (c) Wang C, Dong H, Hu W et al (2011) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112(4):2208–2267; (d) Sirringhaus H (2014) Approaching disorder-free transport in high-mobility conjugated polymers. Adv Mater 26:1319–1331

    Google Scholar 

  2. https://en.wikipedia.org/wiki/Organic_semiconductor

  3. (a) Huang J, Li G, Wu E et al (2006) Achieving high-efficiency polymer white-light-emitting devices. Adv Mater 18:114–117; (b) Huang J, Watanabe T, Ueno K et al (2007) Highly efficient red-emission polymer phosphorescent light-emitting diodes based on two novel tris(1-phenylisoquinolinato-2n) iridium (iii) derivatives. Adv Mater 19(5):739–743

    Google Scholar 

  4. (a) Briseno AL, Mannsfeld SCB, Ling MM et al (2006) Patterning organic single-crystal transistor arrays. Nature 444(7121):913–917; (b) Briseno AL, Tseng RJ, Ling, MM et al (2006) High-performance organic single-crystal transistors on flexible substrates. Adv Mater 18:2320–2324; (c) Mei J, Diao Y, Appleton AL et al (2013) Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 135(18):6724–6746; (d) Holliday S, Donaghey JE, McCulloch I (2013) Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem Mater 26(1):647–663; (e) Wang Y, Kadoya T, Wang L et al (2015) Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π -conjugated bridges on ambipolar transport. J Mater Chem C 3(6):1196–1207

    Google Scholar 

  5. (a) Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868; (b) Chen HY, Lo MKF, Yang G et al (2008) Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat Nanotechnol 3(9):543–547; (c) Hou J, Park MH, Zhang S et al (2008) Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1,2-b 4,5-b′] dithiophene. Macromolcules 41(16):6012–6018; (d) Hou J, Chen HY, Zhang S et al (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130(48):16144–16145; (e) Chen HY, Hou J, Zhang S et al (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3(11):649–653; (f) Chu TY, Lu J, Beaupré S, et al (2011) Bulk heterojunction solar cells using thieno [3,4-c] pyrrole-4,6-dione and dithieno [3,2-b 2′,3′-d] silole copolymer with a power conversion efficiency of 7.3%. J Am Chem Soc 133(12):4250–4253; (g) Wang Y, Liu Y, Chen S et al (2013) Significant enhancement of polymer solar cell performance via side-chain engineering and simple solvent treatment. Chem Mater 25(15):3196–3204; (h) Wang Y, Yang F, Liu Y et al (2013) New alkylfuranyl-substituted benzo [1,2-b 4,5-b′] dithiophene-based donor–acceptor polymers for highly efficient solar cells. Macromolcules 46(4):1368–1375; (i) Liu Q, Liu Y, Wang Y et al (2013) Anthradithiophene-benzothiadiazole-based small molecule donors for organic solar cells. New J Chem 37(11):3627–3633; (j) Kim G, Kang SJ, Dutta GK et al (2014) A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V s that substantially exceeds benchmark values for amorphous silicon semiconductors. J Am Chem Soc 136(26):9477–9483; (k) Liu Y, Wang Y, Ai L et al (2015) Perylenebisimide regioisomers effect of substituent position on their spectroscopic, electrochemical, and photovoltaic properties. Dyes Pigm 121:363–371; (l) Wang Y, Klein MFG, Hiyoshi J et al (2015) Bulk-Heterojunction organic solar cells based on benzobisthiadiazole semiconducting polymers. J Photopolym Sci Technol 28(3):385–391; (m) Yang YM, Chen W, Dou L et al (2015) High-performance multiple-donor bulk heterojunction solar cells. Nat Photon 9(3):190–198

    Google Scholar 

  6. (a) Tee BCK, Chortos A, Berndt A et al (2015) A skin-inspired organic digital mechanoreceptor. Science 350(6258):313–316; (b) Yokota T, Inoue Y, Terakawa Y et al (2015) Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc Natl Acad Sci USA 112: 14533–14538

    Google Scholar 

  7. (a) Torrent MM, Rovira C (2011) Role of molecular order and solid-state structure in organic field-effect transistors. Chem Rev 111(8):4833–4856; (b) Kim FS, Ren GQ, Jenekhe SA (2011) One-dimensional nanostructures of π -conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23(3):682–732

    Google Scholar 

  8. (a) Sirringhaus H, Bird M, Zhao N (2010) Charge transport physics of conjugated polymer field-effect transistors. Adv Mater 22(34):3893–3898; (b) Dong HL, Hu WP (2011) Doped ceria based solid oxide fuel cell electrolytes and their sintering aspects. Prog Chem 23:104–121

    Google Scholar 

  9. Salleo A (2007) Charge transport in polymeric transistors. Mater Today 10(3):38–45

    Article  Google Scholar 

  10. Giri G, Verploegen E, Mannsfeld SCB et al (2011) Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480(7378):504–508

    Article  Google Scholar 

  11. (a) Tremel K, Fischer FSU, Kayunkid N et al (2014) Charge transport anisotropy in highly oriented thin films of the acceptor polymer (NDI2OD-T2). Adv Energy Mater 4(10):1301659; (b) O’Connor BT, Reid OG, Zhang X et al (2014) Morphological origin of charge transport anisotropy in aligned polythiophene thin films. Adv Funct Mater 24(22):3422–3431

    Google Scholar 

  12. Rivnay J, Jimison LH, Northrup JE et al (2009) Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat Mater 8(12):952–958

    Article  Google Scholar 

  13. Yuan Y, Giri G, Ayzner AL et al (2014) Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat Commun 3005

    Google Scholar 

  14. (a) Jimison LH, Toney MF, McCulloch I et al (2009) Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv Mater 21:1568; (b) Brinkmann M, Gonthier E, Bogen S et al (2012) Segregated versus mixed interchain stacking in highly oriented films of naphthalene diimide bithiophene copolymers. ACS Nano 6(11):10319–10326

    Google Scholar 

  15. (a) Müller C, Aghamohammadi M, Himmelberger S et al (2013) One-Step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv Funct Mater 23(19):2368–2377; (b) Park KS, Salunkhe SM, Lim I et al (2013) High-performance air-stable single-crystal organic nanowires based on a new indolocarbazole derivative for field-effect transistors. Adv Mater 25(24):3351–3356; (c) Kim JY, Yang DS, Shin J et al (2015) High-performing thin-film transistors in large spherulites of conjugated polymer formed by epitaxial growth on removable organic crystalline templates. ACS Appl Mater Interfaces 7(24):13431–13439

    Google Scholar 

  16. Sirringhaus H, Brown PJ, Friend RH et al (1999) Two-dimensional charge transport in self-organized high-mobility conjugated polymers. Nature 401(6754):685–688

    Article  Google Scholar 

  17. (a) McCullough RD, Lowe RD (1992) Molecular engineering of π-conjugated polymers. Radical polymerisation polyelectrolytes. J Chem Soc 70:2–14; (b) Chen TA, Rieke RD (1992) The first regioregular head-to-tail poly (3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J Am Chem Soc 114(25):10087–10088; (c) McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10(2):93–116

    Google Scholar 

  18. Osaka I, McCullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41(9):1202–1214

    Article  Google Scholar 

  19. Ong BS, Wu Y, Liu P et al (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126(11):3378–3379

    Article  Google Scholar 

  20. Kline RJ, Delongchamp DM, Fischer DA et al (2007) Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 40(22):7960–7965

    Article  Google Scholar 

  21. (a) McCulloch M, Heeney M, Bailey C et al (2006) Local charge trapping in conjugated polymers resolved by scanning Kelvin probe microscopy. Nature Mater 5:328–342; (b) McCulloch I, Heeney M, Chabinyc ML et al (2009) Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv Mater 21(10–11):1091–1109

    Google Scholar 

  22. (a) Chabinyc ML, Toney MF, Kline RJ et al (2007) X-ray scattering study of thin films of poly (2,5-bis (3-alkylthiophen-2-yl) thieno [3,2-b] thiophene). J Am Chem Soc 129(11):3226–3237; (b) Hamadani BH, Gundlach DJ, McCulloch I et al (2007) Undoped polythiophene field-effect transistors with mobility of 1 cm2. App Phys Lett 91(24):3512.; (c) Umeda T, Kumaki D, Tokito S (2009) Surface-energy-dependent field-effect mobilities up to 1 cm2/V for polymer thin-film transistor. J App Phys 105(2): 516–529

    Google Scholar 

  23. (a) Ying L, Hsu BB, Zhan H et al (2011) Regioregular pyridal [2,1,3] thiadiazole π-conjugated copolymers. J Am Chem Soc 133(46):18538–18541; (b) Zhang X, Richter LJ, DeLongchamp DM, et al (2011) Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J Am Chem Soc 133(38):15073–15084; (c) Biniek L, Schroeder BC, Nielsen CB et al (2012) Recent advances in high mobility donor–acceptor semiconducting polymers. J Mater Chem 22(30):14803–14813

    Google Scholar 

  24. Perez LA, Zalar P, Ying L et al (2014) Effect of backbone regioregularity on the structure and orientation of a donor–acceptor semiconducting copolymer. Macromolecules 47(4):1403–1410

    Article  Google Scholar 

  25. Rieger R, Beckmann D, Mavrinskiy A et al (2010) Backbone curvature in polythiophenes. Chem Mater 22:5314–5318

    Google Scholar 

  26. Osaka I, Abe T, Shinamura S et al (2011) Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. J Am Chem Soc 133(17):6852–6860

    Article  Google Scholar 

  27. Lei T, Cao Y, Fan Y et al (2011) High-performance air-stable organic field-effect transistors isoindigo-based conjugated polymers. J Am Chem Soc 133(16):6099–6101

    Article  Google Scholar 

  28. Ma Z, Wang E, Jarvid ME et al (2012) Imide/amide based π-conjugated polymers for organic electronics. J Mater Chem 22:2306–2318

    Article  Google Scholar 

  29. Chen MS, Niskala JR, Unruh DA et al (2013) Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity. Chem Mater 25(20):4088–4096

    Article  Google Scholar 

  30. Kim G, Kang SJ, Dutta GK et al (2014) A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V s that substantially exceeds benchmark values for amorphous silicon semiconductors. J Am Chem Soc 136(26):9477–9483

    Article  Google Scholar 

  31. Yum S, An TK, Wang X et al (2014) Benzotriazole-containing planar conjugated polymers with noncovalent conformational locks for thermally stable and efficient polymer field-effect transistors. Chem Mater 26(6):2147–2154

    Article  Google Scholar 

  32. Wang Y, Masunaga H, Hikima T et al (2015) New semiconducting polymers based on benzobisthiadiazole analogues tuning of charge polarity in thin film transistors via heteroatom substitution. Macromolecules 48(12):4012–4023

    Article  Google Scholar 

  33. Mei J, Bao Z (2013) Side chain engineering in solution-processable conjugated polymers. Chem Mater 26(1):604–615

    Article  Google Scholar 

  34. (a) Tao HN, Cho DM, Park I et al (2011)Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133(8):2605–2612; (b) Piliego C, Holcombe TW, Douglas JD et al (2010) Synthetic control of structural order in N-alkylthieno [3,4-c] pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc 132(22):7595–7597

    Google Scholar 

  35. Mei J, Kim DH, Ayzner AL et al (2011) Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc 133(50):20130–20133

    Article  Google Scholar 

  36. Lee J, Han AR, Kim J et al (2012) Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J Am Chem Soc 134(51):20713–20721

    Article  Google Scholar 

  37. Lee J, Han AR, Yu H et al (2013) Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J Am Chem Soc 135(25):9540–9547

    Article  Google Scholar 

  38. Kocieñski PJ, Protecting Groups, 3rd Ed., (Georg Thieme Verlag, New York 2005)

    Google Scholar 

  39. Lei T, Dou JH, Pei J (2012) Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv Mater 24:6457–6482

    Article  Google Scholar 

  40. Kang IL, Yun HJ, Chung DS et al (2013) Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc 135(40):14896–14899

    Article  Google Scholar 

  41. (a) Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6:153–161; (b) Ouyang X, Peng R, Ai L et al (2015) Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat Photon 9(8):520–524

    Google Scholar 

  42. Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027–15040

    Article  Google Scholar 

  43. Zhang M, Guo X, Zhang S et al (2014) Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater 26(7):1118–1123

    Article  Google Scholar 

  44. (a) Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868; (b) Kim Y, Cook S, Tuladhar SM et al (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater 5(3):197–203

    Google Scholar 

  45. (a) Blouin N, Michaud A, Gendron D et al (2008) Toward a rational design of poly (2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130(2):732–742; (b) Liang Y, Wu Y, Feng D et al (2008) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131(1):56–57; (c) Wang M, Hu X, Liu P et al (2011) Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc 133(25):9638–9641

    Google Scholar 

  46. (a) Schilinsky P, Asawapirom U, Scherf U et al (2005) Polymer-fullerene bulk-heterojunction solar cells. Chem Mater 17:175–182 (b) Koppe M, Brabec CJ, Heiml S et al (2009) Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules 42(13):4661–4666; (c) Bijleveld JC, Zoombelt AP, Mathijssen SGJ et al (2009) Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells. J Am Chem Soc 31:16616–16634; (d) Müller C, Wang E, Andersson LM et al (2010) Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Adv Funct Mater 20(13):2124–2131

    Google Scholar 

  47. (a) Piliego C, Holcombe TW, Douglas JD et al (2010) Synthetic control of structural order in N-alkylthieno [3, 4-c] pyrrole-4, 6-dione-based polymers for efficient solar cells. J Am Chem Soc 132(22):7595–7597; (b) Zhang Y, Hau SK, Yip HL et al (2010) Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione. Chem Mater 22(9):2696–2698; (c) Zou Y, Najari A, Berrouard P et al (2010) A thieno [3,4-c] pyrrole-4, 6-dione-based copolymer for efficient solar cells. J Am Chem Soc 132(15):5330–5331; (d) Cabanetos C, Labban A, Bartelt JA et al (2013) Linear side chains in benzo [1,2-b 4,5-b′] dithiophene-thieno [3,4-c] pyrrole-4, 6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc 135(12):4656–4659

    Google Scholar 

  48. Schilinsky P, Asawapirom U, Scherf U et al (2015) Polymer–fullerene bulk-heterojunction solar cells. Chem Mater 17:175–182

    Google Scholar 

  49. Ma W, Kim JY, Lee K et al (2007) Effect of the molecular weight of poly (3-hexylthiophene) on the morphology and performance of polymer bulk heterojunction solar cells. Macromol Rapid Comm 28(17):1776–1780

    Article  Google Scholar 

  50. Coffin RC, Peet J, Rogers J et al (2009) Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1(8):657–661

    Article  Google Scholar 

  51. Zhou HX, Yang LQ (2010) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Macromolecules 43:811–832

    Article  Google Scholar 

  52. (a) Chu TY, Lu J, Beaupré S et al (2012) Effects of the molecular weight and the side-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers. Adv Funct Mater 22:2345–2351; (b) Liu C, Wang K, Hu X et al (2013) Molecular weight effect on the efficiency of polymer solar cells. ACS Appl Mater Interfaces 5(22):12163–12167; (c) Hendriks KH, Heintges GHL, Gevaerts VS et al (2013) High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem Int Ed 52:8341–8344

    Google Scholar 

  53. Osaka I, Saito M, Mori H et al (2012) Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Adv Mater 24(3):425–430

    Article  Google Scholar 

  54. Li W, Yang L, Tumbleston JR et al (2014) Controlling molecular weight of a high efficiency donor–acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv Mater 26(26):4456–4462

    Article  Google Scholar 

  55. Tong M, Cho S, Rogers JT et al (2010) Higher molecular weight leads to improved photoresponsivity, charge transport and interfacial ordering in a narrow bandgap semiconducting polymer. Adv Funct Mater 20(22):3959–3965

    Article  Google Scholar 

  56. Tang ML, Bao Z (2010) Halogenated materials as organic semiconductors. Chem Mater 23(3):446–455

    Article  Google Scholar 

  57. Li J, Zhang X, Jin H et al (2015) Synthesis of fluorine-containing phosphodiesterase 10A (PDE10A) inhibitors and the in vivo evaluation of F-18 labeled PDE10A PET tracers in rodent and nonhuman primate. Int J Med Chem 58(21):8584–8600

    Article  Google Scholar 

  58. Keinänen XG, Li NK, Lumen Chenna D et al (2016) A new highly reactive and low lipophilicity fluorine-18 labeled tetrazine derivative for pretargeted PET imaging. ACS Med Chem Lett 7(1):62–66

    Article  Google Scholar 

  59. Jian W, He D, Xi P et al (2015) Synthesis and biological evaluation of novel fluorine-containing stilbene derivatives as fungicidal agents against phytopathogenic fungi. J Agric Food Chem 63(45):9963–9969

    Article  Google Scholar 

  60. (a) Bronstein H, Frost JM, Hadipour A et al (2013) Effect of fluorination on the properties of a donor–acceptor copolymer for use in photovoltaic cells and transistors. Chem Mater 25(3):277–285; (b) Yang Y, Wu R, Wang X et al (2014) Isoindigo fluorination to enhance photovoltaic performance of donor–acceptor conjugated copolymers. Chem Commun 50(4):439–441

    Google Scholar 

  61. Tumbleston JR, Collins BA, Yang L et al (2014) The influence of molecular orientation on organic bulk heterojunction solar cells. Nat Photon 8:385–391

    Article  Google Scholar 

  62. Li W, Albrecht S, Yang L et al (2014) Mobility-controlled performance of thick solar cells based on fluorinated copolymers. J Am Chem Soc 136(44):15566–15576

    Article  Google Scholar 

  63. Zheng YQ, Wang Z, Dou JH et al (2015) Effect of halogenation in isoindigo-based polymers on the phase separation and molecular orientation of bulk heterojunction solar cells. Macromocules 48(16):5570–5577

    Article  Google Scholar 

  64. Szarko JM, Guo J, Liang Y et al (2010) When function follows form: effects of donor copolymer side chains on film morphology and BHJ solar cell performance. Adv Mater 22(48):5468–5472

    Article  Google Scholar 

  65. Osaka I, Kakara T, Takemura N et al (2013) Naphthodithiophene-naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J Am Chem Soc 135(24):8834–8837

    Article  Google Scholar 

  66. Osaka I, Zhang R, Sauvé G et al (2009) High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. J Am Chem Soc 131(7):2521–2529

    Article  Google Scholar 

  67. Osaka I, Saito M, Koganezawa T et al (2014) Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. Adv Mater 26(2):331–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Michinobu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, Y., Michinobu, T. (2017). Effects of Polymer-Packing Orientation on the Performances of Thin Film Transistors and Photovoltaic Cells. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_16

Download citation

Publish with us

Policies and ethics