Skip to main content

Nanostructured Polymers and Polymer/Inorganic Nanocomposites for Thermoelectric Applications

  • Chapter
  • First Online:
Book cover Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Thermoelectric generators (TEGs) are being considered as one of the most promising green technology to convert the waste energy into useful electricity. Conjugated polymers and their nanostructures possess high electrical conductivity, low thermal conductivity, and reasonable Seebeck coefficient, which can meet the requirements for high-efficiency TEGs. This chapter focuses on recent progress in the development of nanostructured polymers and polymer/inorganic nanocomposites with multi-dimensional nanostructures (0D, 1D to 2D) for thermoelectric applications. The challenges and perspectives in the emerging field of nanostructured polymers are also involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. a) Jaworski CM, Yang J, Mack S et al (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater 9:898–903; b) Uchida K, Takahashi S, Harii K et al (2008) Observation of the spin Seebeck effect. Nature 455:778–781; c) Geballe TH, Hull GW (1955) Seebeck effect in silicon. Phys Rev 98(4):940; d) Geballe TH, Hull GW (1954) Seebeck effect in germanium. Phys Rev 94(5):1134

    Google Scholar 

  2. a) Yang J, Caillat T (2006) Thermoelectric materials for space and automotive power generation. MRS Bull 31(03):224–229; b) Xie J, Zhao C, Lin Z et al (2016) Nanostructured conjugated polymers for energy-related applications beyond solar cells. Chem Asian J 11(10):1489–1511

    Google Scholar 

  3. a) Venkatasubramanian R, Siivola E, Colpitts T et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602; b) Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639

    Google Scholar 

  4. a) Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362; b) Zhou C, Morelli D, Zhou X et al (2011) Thermoelectric properties of P-type Yb-filled skutterudite Ybx Fey Co4-y Sb12. Intermetallics 19(10):1390–1393

    Google Scholar 

  5. a) Wu D, Zhao LD, Hao S et al (2014) Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 136(32):11412–11419; b) Zhao LD, Zhang X, Wu H et al (2016) Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc 138(7):2366–2373

    Google Scholar 

  6. a) Dughaish ZH (2002) Lead telluride as a thermoelectric material for thermoelectric power generation. Phys B Condens Matter 322(1):205–223; b) Zhao LD, Hao S, Lo SH et al (2013) High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J Am Chem Soc 135(19):7364–7370; c) Yim WM, Rosi FD (1972) Compound tellurides and their alloys for peltier cooling—A review. Solid State Electron 15(10):1121–1140

    Google Scholar 

  7. a) Boukai AI, Bunimovich Y, TahirKheli J et al (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171; b) Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731; c) Hicks LD, Harman TC, Sun X et al (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53(16):10493–10496; d) Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167

    Google Scholar 

  8. Harman TC, Taylor PJ, Walsh MP et al (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297(5590):2229–2232

    Article  Google Scholar 

  9. Wang RY, Feser JP, Lee JS et al (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8(8):2283–2288

    Article  Google Scholar 

  10. Harada K, Sumino M, Adachi C et al (2010) Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). Appl Phys Lett 96(25):253–304

    Article  Google Scholar 

  11. a) Hong C T, Lee W, Kang Y H et al (2015) Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J Mater Chem A 3(23):12314–12319; b) Bounioux C, DíazChao P, CampoyQuiles M et al (2013) Thermoelectric composites of poly (3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 6(3):918–925; c) Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv mater 22(4):535–539

    Google Scholar 

  12. a) Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581; b) Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448

    Google Scholar 

  13. a) Liu H, Wang J, Hu X et al (2002) Structure and electronic transport properties of polyaniline/NaFe 4P composite. Chem Phys Lett 352(3):185–190; b) Yao Q, Chen L, Qu S (2015) Conducting polymer-based nanocomposites for thermoelectric applications fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties and applications, pp 339–378; c) He M, Qiu F, Lin Z (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6(5):1352–1361; d) Du Y, Shen S Z, Cai K et al (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841

    Google Scholar 

  14. a) Sun J, Yeh ML, Jung BJ et al (2010) Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states. Macromolecules 43(6):2897–2903; b) Zhang Q, Sun Y, Xu W et al (2014) What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47(2):609–615; c) Poehler TO, Katz HE (2012) Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ Sci 5(8):8110–8115; d) Park T, Park C, Kim B et al (2013) Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ Sci 6(3):788–792

    Google Scholar 

  15. a) Moses D, Denenstein A (1984) Experimental determination of the thermal conductivity of a conducting polymer: Pure and heavily doped polyacetylene. Phys Rev B 30(4): 2090–2097; b) Costa ACR, Siqueira AF (1996) Exact optimum design of segmented thermoelectric generators. J Appl Phys 80:5579–5582

    Google Scholar 

  16. a) Yang J, Yip HL, Jen AKY (2013) Rational design of advanced thermoelectric materials. Adv Energy Mater 3(5):549–565; b) Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362

    Google Scholar 

  17. a) Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials a mini review. Synth Met 162(11):912–917; b) Zhang Q, Sun Y, Xu W et al (2014) Organic thermoelectric materials Emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26(40):6829–6851

    Google Scholar 

  18. Bubnova O, Khan ZU, Wang H et al (2014) Semi-metallic polymers. Nat Mater 13(2):190–194

    Article  Google Scholar 

  19. a) Wu J, Zhang Q (2015) Thermoelectric polymers. Encycl Polym Nanomater 2510–2516; b) Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4(19):7091–7106; c) Wu J, Sun Y, Pei WB et al (2014) Polypyrrole nanotube film for flexible thermoelectric application. Synthetic Metals 196:173–177; d) Wu J, Sun Y, Xu W et al (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Metals 189:177–182

    Google Scholar 

  20. a) Wu J, Sun Y, Xu W et al (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Metals 189:177–182; b) Cademartiri L, Ozin GA (2009) Ultrathin nanowires a materials chemistry perspective. Adv Mater 21(9):1013–1020

    Google Scholar 

  21. a) Dresselhaus MS, Chen G, Tang MY et al (2004) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053; b) Hsu KF, Loo S, Guo F et al (2004) Cubic agb msbte bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821

    Google Scholar 

  22. Pintér E, Fekete ZA, Berkesi O et al (2007) Characterization of poly (3-octylthiophene)/silver nanocomposites prepared by solution doping. J Phys Chem C 111(32):11872–11878

    Article  Google Scholar 

  23. Liu Y, Lin Y, Shi Z et al (2005) Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J Am Cer Soc 88(5):1337–1340

    Article  Google Scholar 

  24. Liu C, Jiang F, Huang M et al (2011) Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials. J Electron Mater 40(5):948–952

    Article  Google Scholar 

  25. Wang YY, Cai KF, Yin JL et al (2012) One-pot fabrication and thermoelectric properties of Ag Te–polyaniline core–shell nanostructures. Mater Chem Phys 133(2):808–812

    Article  Google Scholar 

  26. Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888):554–557

    Article  Google Scholar 

  27. Wang YY, Cai KF, Yin JL et al (2010) Research progress on polymer-inorganic thermoelectric nanocomposite materials. J Nanopart Res 13:533–539

    Article  Google Scholar 

  28. Zhao XB, Hu SH, Zhao MJ et al (2002) Thermoelectric properties of polyaniline hybrids prepared by mechanical blending. Mater Lett 52(3):147–149

    Article  Google Scholar 

  29. Toshima N, Imai M, Ichikawa S (2010) Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth (III) telluride nanoparticles. J Elect Mater 40(5):898–902

    Article  Google Scholar 

  30. Song H, Liu C, Zhu H et al (2013) Improved thermoelectric performance of free-standing PEDOT: PSS/Bi2Te3 films with low thermal conductivity. J Elect Mater 42(6):1268–1274

    Article  Google Scholar 

  31. Zhang B, Sun J, Katz HE et al (2010) Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2(11):3170–3178

    Article  Google Scholar 

  32. Horne RA (1959) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. J Appl Phys 30:393–397

    Article  Google Scholar 

  33. See KC, Feser JP, Chen CE et al (2010) Water-processable polymer–nanocrystal hybrids for thermoelectrics. Nano Lett 10(11):4664–4667

    Article  Google Scholar 

  34. Coates NE, Yee SK, McCulloch B et al (2013) Effect of interfacial properties on polymer–nanocrystal thermoelectric transport. Adv Mater 25(11):1629–1633

    Article  Google Scholar 

  35. Uvarov NF (2000) Grundlagen der strahlentherapeutischen methoden[m]/allgemeine strahlentherapeutische methodik/methods and procedures of radiation therapy. Solid State Ion 136–137:1267–1272

    Article  Google Scholar 

  36. Ma S, Anderson K, Guo LA et al (2014) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Appl Phys Lett 105:905–922

    Google Scholar 

  37. Stallinga P (2011) Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory. Adv Mater 23(30):3356–3362

    Article  Google Scholar 

  38. Chen B, Uher C, Iordanidis L et al (1997) Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6. 33S10 and K2Bi8S13. Chem Mater 9(7):1655–1658

    Article  Google Scholar 

  39. Wang YY, Cai KF, Yao X (2012) Adsorptive remediation of environmental pollutants using novel graphene-based nano materials. J Nanopart Res 14:1–7

    Google Scholar 

  40. Wang Y, Cai K, Yao X (2011) Facile fabrication and thermoelectric properties of Pb2Te3-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3(4):1163–1166

    Article  Google Scholar 

  41. a) Cho B, Park KS, Baek J et al (2014) Single-crystal poly(3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett 14(6):3321–3327; b) Huang J, Virji S, Weiller BH et al (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315; c) Su K, Nuraje N, Zhang L et al (2007) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization crystallization of 3, 4-ethylenedioxythiophene. Adv Mater 19(5):669–672

    Google Scholar 

  42. Vineis CJ, Shakouri A, Majumdar A et al (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22(36):3970–3980

    Article  Google Scholar 

  43. Zaia EW, Sahu A, Zhou P et al (2016) Carrier scattering at alloy nanointerfaces enhances power factor in PEDOT:PSS hybrid thermoelectrics. Nano Lett 16(5):3352–3359

    Article  Google Scholar 

  44. Choi J, Lee JY, Lee SS et al (2016) Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Adv Energy Mater 150(2):181–189

    Google Scholar 

  45. Li Y, Zhao Q, Wang Y et al (2011) Synthesis and characterization of Bi2Te3/polyaniline composites. Mater Sci Semicond Process 14(3):219–222

    Article  Google Scholar 

  46. Du Y, Cai KF, Chen S et al (2014) Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl Mater Interfaces 6(8):5735–5743

    Article  Google Scholar 

  47. Ren L, Qi X, Liu Y et al (2012) Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J Mater Chem 22(11):4921–4926

    Article  Google Scholar 

  48. Mehta RJ, Zhang Y, Karthik C et al (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater 11(3):233–240

    Article  Google Scholar 

  49. Huang W, Luo X, Gan CK et al (2014) Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys Chem Chem Phys 16(22):10866–10874

    Article  Google Scholar 

  50. Radisavljevic B, RadenovicA Brivio J et al (2011) High-quality BN WSe2 BN heterostructure and its quantum oscillations. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  51. a) Liu X, Zhang G, Pei QX et al (2013) Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl Phys Lett 103(13):113–133; b) Babaei H, Khodadadi JM, Sinha S (2014) Large theoretical thermoelectric power factor of suspended single-layer MoS2. Appl Phys Lett 105(19):193901

    Google Scholar 

  52. Mansfield R, Salam SA (1953) Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Proc Phys Soc 66:377

    Article  Google Scholar 

  53. Kanatzidis MG, Bissessur R, DeGroot DC et al (1993) New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in molybdenum disulfide. Chem Mater 5(5):595–596

    Article  Google Scholar 

  54. Jiang F, Xiong J, Zhou W et al (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4(14):5265–5273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lin, Z., Zhang, Q. (2017). Nanostructured Polymers and Polymer/Inorganic Nanocomposites for Thermoelectric Applications. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_14

Download citation

Publish with us

Policies and ethics