Skip to main content

Hybrid Intelligence Nano-enriched Sensing and Management System for Efficient Water-Quality Monitoring

  • Conference paper
  • First Online:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (IntelliSys 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 15))

Included in the following conference series:

  • 1592 Accesses

Abstract

This paper presents a comprehensive water-quality monitoring system that employs a smart network management, Nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS), and Operation Management subsystem (OMS). The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. For the communication framework within the designed system, we propose a Hybrid Intelligence (HI) scheme for efficient data classification and forwarding processes. The scheme integrates a machine learning algorithm, Fuzzy logic and weighted decision trees. The proposed methodology depends on profiling raw data readings, generated from a set of optical nano-sensors, as profiles of attribute value pairs. Then, data patterns are learnt adopting association rule learning algorithm clarifying the most frequent attributes and their related values. According to the discovered sets of attributes, a set of Fuzzy membership functions are directed to produce a discrete sample space and a specific membership class for each attribute based on its value. Based on information theory concepts and calculated attribute-dependent entropies and information gains, weighted decision trees are built to help take decisions of data forwarding and to generate long-term rules. As a case study, we conduct a set of simulation scenarios for detecting and forwarding data related to water quality levels. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburton, P.R., Sawtell, R.S., Watson, A., Wang, A.Q.: Failure prediction for a galvanic oxygen sensor. Sens. Actuators B Chem. 72, 197–203 (2001)

    Article  Google Scholar 

  2. Acosta, M.A., Ymele-Leki, P., Kostov, Y.V., Leach, J.B.: Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials 30, 3068–3074 (2009)

    Article  Google Scholar 

  3. Mohyeldin, A., Garzón-Muvdi, T., Quiñones-Hinojosa, A.: Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010)

    Article  Google Scholar 

  4. Chu, C.S., Lo, Y.L.: Optical fiber dissolved oxygen sensor based on Pt(II) complex and core-shell silica nanoparticles incorporated with sol–gel matrix. Sens. Actuators B 151, 83–89 (2010)

    Article  Google Scholar 

  5. Maskell, W.C.: Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J. Phys. E Sci. Instrum. 20, 1156–1168 (1987)

    Article  Google Scholar 

  6. Sanghavi, R., Nandasiri, M., Kuchibhatla, S., Jiang, W., Varga, T., Nachimuthu, P., Engelhard, M.H., Shutthanandan, V., Thevuthasan, S., Kayani, A., Prasad, S.: Thickness dependency of thin-film samaria-doped ceria for oxygen sensing. IEEE Sens. J. 11, 217–224 (2011)

    Article  Google Scholar 

  7. Wang, X., Wolfbeis, O.S.: Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666–3761 (2014)

    Article  Google Scholar 

  8. Chen, L., Xu, S., Li, J.: Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev. 40, 2922–2942 (2011)

    Article  Google Scholar 

  9. Mistlberger, G., Klimant, I.: Luminescent magnetic particles: structures, syntheses, multimodal imaging, and analytical applications. Bioanal. Rev. 2, 61–101 (2010)

    Article  Google Scholar 

  10. Shehata, N., Meehan, K., Leber, D.: Fluorescence quenching in ceria nanoparticles: dissolved oxygen molecular probe with relatively temperature insensitive Stern–Volmer constant up to 50 °C. J. Nanophotonics 6, 063529 (2012)

    Article  Google Scholar 

  11. Shehata, N., Meehan, K., Hudait, M., Jain, N., Gaballah, S.: Study of optical and structural characteristics of ceria nanoparticles doped with negative and positive association lanthanide elements. J. Nanomater. 2014 (2014). 401498/1-7

    Google Scholar 

  12. Ramamoorthy, R., Dutta, P.K., Akbar, S.A.: Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 38, 4271–4282 (2003)

    Article  Google Scholar 

  13. Oczkowski, A., Nixon, S.: Increasing nutrient concentrations and the rise and fall of a coastal fishery; a review of data from the Nile Delta, Egypt, Estuar. Coast. Shelf Sci. 77, 309–319 (2008)

    Article  Google Scholar 

  14. Azab, M., Eltoweissy, M.: Bio-inspired evolutionary sensory system for cyber-physical system defense. In: IEEE Technologies for Homeland Security, November 2012

    Google Scholar 

  15. Hill, C., Sippel, K.: Modern deformation monitoring: a multi sensor approach. In: FIG XXII International Congress, Washington, D.C., USA, April 2002

    Google Scholar 

  16. Garich, E.A.: Wireless, automated monitoring for potential landslide hazards, Master thesis. Texas A&M University, May 2007

    Google Scholar 

  17. Yick, J., et al.: Wireless sensor network survey. Comput. Netw. 52, 2292–2330 (2008)

    Article  Google Scholar 

  18. Luo, J., et al.: Opportunistic routing algorithm for relay node selection in wireless sensor networks. IEEE Trans. Ind. Inf. 11, 112–121 (2015)

    Article  Google Scholar 

  19. Azab, M., Eltoweissy, M.: ChameleonSoft: software behavior encryption for moving target defense. J. Mob. Netw. Appl. (MONET) (2012). doi:10.1007/s11036-012-0392-0

    Google Scholar 

  20. Morsy, M., Azab, M., Mokhtar, B.: Cross-layer security framework for smart grid: physical security layer. In: Proceedings of the IEEE PES ISGT Europe (2014)

    Google Scholar 

  21. Di Francesco, M., et al.: Data collection in wireless sensor networks with mobile elements: a survey. ACM Trans. Sens. Netw. (TOSN) 8, 7 (2011)

    Google Scholar 

  22. Seada, K., et al.: Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 108–121 (2004)

    Google Scholar 

  23. Mokhtar, B., Eltoweissy, M.: Hybrid intelligence for semantics-enhanced networking operations. In: The Twenty-Seventh International Flairs Conference, pp. 449–454 (2014)

    Google Scholar 

  24. Buckley, J.J., Eslami, E.: An Introduction to Fuzzy Logic and Fuzzy Sets, vol. 13. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  25. Debray, S.K., et al.: Weighted decision trees. In: JICSLP, pp. 654–668 (1992)

    Google Scholar 

  26. Matiaško, K., et al.: Learning fuzzy rules from fuzzy decision trees. J. Inf. Control Manag. Syst. 4, 143–154 (2006)

    Google Scholar 

  27. Atkinson, C.A., et al.: Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69, 1428–1437 (2007)

    Article  Google Scholar 

  28. Agrawal, R., et al.: Mining association rules between sets of items in large databases. In: ACM SIGMOD Record, pp. 207–216 (1993)

    Google Scholar 

  29. Vasconcelos, N., Lippman, A.: Statistical models of video structure for content analysis and characterization. IEEE Trans. Image Process. 9, 3–19 (2000)

    Article  Google Scholar 

  30. Chen, H., Chang, H.: Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf. A 242, 61–69 (2004)

    Article  Google Scholar 

  31. Shehata, N., Meehan, K., Hassounah, I., Hudait, M., Jain, N., Clavel, M., Elhelw, S., Madi, N.: Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions. Nanoscale Res. Lett. 9, 231 (2014)

    Article  Google Scholar 

  32. Shehata, N., Azab, M., Kandas, I., Meehan, K.: Nano-enriched and autonomous sensing framework for dissolved oxygen. Sensors (2015). doi:10.3390/s150820193

    Google Scholar 

  33. Sobeih, A., et al.: J-Sim: a simulation and emulation environment for wireless sensor networks. IEEE Wirel. Commun. 13, 104–119 (2006)

    Article  Google Scholar 

  34. Pankove, J.: Optical Processes in Semiconductors. Dover Publications Inc., New York (1971)

    Google Scholar 

  35. Kartakis, S., Abraham, E., McCann, J.: WaterBox: a testbed for monitoring and controlling smart water networks. In: CySWater 2015, pp. 8:1–8:6 (2015)

    Google Scholar 

  36. Fattoruso, G., Tebano, C., Agresta, A., Lanza, B., Antonio, B., De Vito, S., Di Francia, G.: A SWE architecture for real time water quality monitoring capabilities within smart drinking water and wastewater network solutions, computational science and its applications. In: ICCSA, pp. 686–697 (2015)

    Google Scholar 

  37. Mokhtar, B., Eltwoeissy, M.: Hybrid Intelligence for smarter networking operations. In: Bhattacharyya, S., et al. (eds.) Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications. IGI Global, Hershey (2015)

    Google Scholar 

  38. Mokhtar, B., Eltoweissy, M.: Towards a data semantics management system for internet traffic. In: The 6th IEEE-IFIP International Conference on New Technologies, Mobility and Security (NTMS), Dubai, UAE (2014)

    Google Scholar 

  39. Azab, M., Eltoweissy, M.: CyPhyMASC: evolutionary monitoring, analysis, sharing and control platform for SmartGrid defense. In: Proceedings of the 15th IEEE International Conference on Information Reuse and Integration (IRI 2014)

    Google Scholar 

  40. Pelusi, L., et al.: Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44, 134–141 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The presented work is part of the awarded grant “ARP2013.R13.2” funded by Information Technology Industry Development Agency (ITIDA Egypt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassem Mokhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mokhtar, B., Azab, M., Shehata, N., Rizk, M. (2018). Hybrid Intelligence Nano-enriched Sensing and Management System for Efficient Water-Quality Monitoring. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. IntelliSys 2016. Lecture Notes in Networks and Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-56994-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56994-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56993-2

  • Online ISBN: 978-3-319-56994-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics