Skip to main content

On the Possibility to Resolve the Scientific Paradoxes in Artificial Cognitive System

Natural-Constructive Approach to the Modelling A Cognitive Process

  • Conference paper
  • First Online:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (IntelliSys 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 15))

Included in the following conference series:

  • 1560 Accesses

Abstract

The concept of scientific paradox and the possibility to reveal and resolve these paradoxes by means of artificial intelligence are discussed. The cognitive architecture designed under the Natural-Constructive Approach for modeling the cognitive process is presented. This approach is aimed to interpret and reproduce the human-like cognitive features including uncertainty, individuality, intuitive and logical thinking, and the role of emotions in cognitive process. It is shown that this architecture involves, in particular, the high-level symbolic information that could be associated with concept of “science”. The scientific paradox is treated as impossibility to merge different representations of the same object. It is shown that these paradoxes could be resolved within the proposed architecture by decomposition of the high-level symbols into low-level of corresponding “images”, with subsequent revision of the object’s memorization procedure. This process should be accompanied by positive emotion manifestation (Eureka!).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.merriam-webster.com/dictionary/paradox

  2. Oxford Advanced Learner’s Dictionary. http://www.oxforddictionaries.com/definition/english/paradox

  3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  4. Samsonovich, A.V., Ascoli, G.A., De Jong, K.A.: Human-level psychometrics for cognitive architectures. In: Smith, L., Sporns, O., Yu, C., Gasser, M., Breazeal, C., Deak, G., Weng, J. (eds.) Proceedings of the Fifth International Conference on Development and Learning (2006)

    Google Scholar 

  5. Vityaev, E.E., Perlovsky, L.I., Kovalerchuk, B.Y., Speransky, S.J.: Probabilistic dynamic logic of cognition. Biol. Inspired Cogn. Archit. 6, 159–168 (2013). (Special issue: papers from Fourth Annual Meeting of the BICA Society)

    Google Scholar 

  6. Chen, D.L., Kim, J., Mooney, R.J.: Training a multilingual sportscaster: using perceptual context to learn language. J. Artif. Intell. Res. 37, 397–435 (2010)

    MATH  Google Scholar 

  7. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Google Scholar 

  8. Samsonovich, A.: Emotional biologically inspired cognitive architecture. Biol. Inspired Cogn. Archit. 6, 109–125 (2013)

    Google Scholar 

  9. Doya, K.: Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732–739 (2000)

    Article  Google Scholar 

  10. Koziol, L.F., Budding, D.E.: Subcortical Structures and Cognition: Implications for Neurophysiological Assessment. Springer, Berlin (2009)

    Book  Google Scholar 

  11. Adcock, R.A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., Gabrieli, J.D.E.: Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50, 507–517 (2006)

    Article  Google Scholar 

  12. Chernavskaya, O.D., Chernavskii, D.S., Karp, V.P., Nikitin, A.P., Shchepetov, D.S.: An architecture of thinking system within the dynamical theory of information. Biol. Inspired Cogn. Archit. 6, 147–158 (2013)

    Google Scholar 

  13. Chernavskaya, O.D., Chernavskii, D.S., Karp, V.P., Nikitin, A.P., Shchepetov, D.S., Rozhylo, Y.A.: An architecture of cognitive system with account for the emotional component. Biol. Inspired Cogn. Archit. 12, 144–154 (2015)

    Google Scholar 

  14. Chernavskii, D.S.: The origin of life and thinking from the viewpoint of modern physics. Phys. Uspekhi 43, 151–176 (2000). Synergetics and Information. Dynamical Theory of Information. Moscow, URSS, 2004 (in Russian)

    Article  Google Scholar 

  15. Haken, H.: Information and Self-Organization: A Macroscopic Approach to Complex Systems. Springer, Berlin (2000)

    MATH  Google Scholar 

  16. Richter-Levin, G., Akirav, I.: Emotional tagging of memory formation—in the search for neural mechanisms. Brain Res. Rev. 43(3), 247–256 (2003)

    Article  Google Scholar 

  17. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2007)

    MATH  Google Scholar 

  18. Chernavskaya, O.D., Rozhylo, Y.A.: On possibility to imitate emotions and a “Sense of Humor” in an artificial cognitive system. In: Proceedings of the Eighth International Conference on Advanced Cognitive Technologies and Applications COGNITIVE 2016, March 20–24, pp. 42–47 (2016)

    Google Scholar 

  19. Chernavskaya, O.D., Rozhylo, Y.A.: On the modelling an Artificial Intelligence with Integrated Intuition and Emotions. In: Proceedings of 25th International Joint Conference on Artificial Intelligence (IJCAI-16), 9–16 July, New York, USA, (2016 in press)

    Google Scholar 

  20. Chernavskaya, O.D.: The cognitive architecture within the natural-constructive approach. In: Proceedings of FIRCES on BICA, pp. 1–7 (2016)

    Google Scholar 

  21. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte Akademie der Wissenschaften vol. 66, pp. 275–370, 1872; Further Studies on the Thermal Equilibrium of Gas Molecules. The Kinetic Theory of Gases. History of Modern Physical Sciences, vol. 1. pp. 262–349 (1872)

    Google Scholar 

  22. Ehrenfest, P., Ehrenfest-Afanassjewa, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca (1959)

    MATH  Google Scholar 

  23. Krylov, N.S.: Works on the Foundations of Statistical Physics (2014). https://www.google.com.ua/search?hl=ru&tbo=p&tbm=bks&q=isbn:1400854741. initially published in Russian in 1950

  24. Sinai, Y.G.: On the foundation of ergodic hypothesis for a dynamical system of statistical mechanics. Sov. Math. Dokl. 4, 1818–1822 (1963)

    MathSciNet  Google Scholar 

  25. Schroedinger, E.: Abhandlungen zur Wellenmechanik, Leipzig, 1927. Collected papers on Wave Mechanics, Glasgow (1928)

    Google Scholar 

  26. Bohr, N.: Foundation of quantum physics. In: Kalckar, J. (ed.) Niels Bohr Collected Works, vol. 6. Elsevier, Amsterdam (2008)

    Google Scholar 

  27. Quastler, H.: The Emergence of Biological Organization. Yale University Press, New Haven (1964)

    Google Scholar 

  28. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  29. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  Google Scholar 

  30. Nagumo, J., Arimoto, S., Yashizawa, S.: An active pulse trans-mission line simulating nerve axon. Proc. IRE 50, 2062 (1962)

    Article  Google Scholar 

  31. Goldberg, E.: The Wisdom Paradox: How Your Mind Can Grow Stronger as Your Brain Grows Older. Gotham, New York (2006)

    Google Scholar 

  32. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. PNAS 79, 2554 (1982)

    Article  MathSciNet  Google Scholar 

  33. Grossberg, S.: Studies of Mind and Brain. Riedel, Boston (1982)

    Book  MATH  Google Scholar 

  34. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  35. Haken, H.: Information and Self-Organization: A Macro-scopic Approach to Complex Systems. Springer, Berlin (2000)

    MATH  Google Scholar 

  36. Bianki, V.L.: Parallel and sequential information processing in animals as a function of different hemispheres. Neurosci. Behav. Physiol. 14(6), 497–501 (1984)

    Article  Google Scholar 

  37. Hebb, D.O.: The Organization of Behavior. Wiley, London (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Chernavskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chernavskaya, O., Chernavskii, D., Rozhylo, Y. (2018). On the Possibility to Resolve the Scientific Paradoxes in Artificial Cognitive System. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. IntelliSys 2016. Lecture Notes in Networks and Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-56994-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56994-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56993-2

  • Online ISBN: 978-3-319-56994-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics