Advertisement

A Robust, Real-Time Capable Framework for Fully Automated Order Picking of Pouch-Parceled Goods

  • Adrian BöckenkampEmail author
  • Frank Weichert
  • Christian Prasse
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 16)

Abstract

The automatic handling of pouch-parceled goods is still challenging because the fillings cause almost random variations of the pouch geometry during conveyance. This paper presents a novel vision-based detection and tracking framework for robustly localizing and tracking pouch-parceled goods in real-time. It is exemplarily integrated in a Cover Belt Conveyor (CBC) system to decide whether and when pouches have to be separated. The core concepts include the estimation of the current pouch velocity using sparse optical flow, the detection and tracking of custom markers by means of structural image analysis and supervised classification, the verification of contextual constraints, and, eventually, the execution of a cutting strategy. The presented concepts tackle the general challenges superimposed by pouch packagings and are thus applicable in any other related automation scenarios as well. An average per-frame processing time of less than 20 ms, an averaged detection accuracy of 99.93% and a cutting accuracy less than 8 mm prove the real-time capabilities, robustness and applicability of the approach.

Keywords

Real-time framework Fiducial marker Image analysis Supervised classification Optical flow 

References

  1. 1.
    Leiking, L.: Method of automated order-picking of pouch-packed goods, Ph.D. dissertation, Technical University of Dortmund, July 2007Google Scholar
  2. 2.
    Ceresana, Market Study: Polyethylene LDPE, vol. 2, April 2010Google Scholar
  3. 3.
    European Union (eurostat Pocketbooks), Key Figures on European Business - With Special Feature on SMEs (2011)Google Scholar
  4. 4.
    Federal Statistical Office of Germany, Produzierendes Gewerbe - Produktion des Verarbeitenden Gewerbes sowie des Bergbaus und der Gewinnung von Steinen und Erden, Statistisches Bundesamt, Fachserie 4, Reihe 3.1 (2015), released 27 Apr 2015Google Scholar
  5. 5.
    Thomas, I., Davie, W., Weidenhamer, D.: Quarterly retail e-commerce sales, U.S. Department of Commerce, May 2015Google Scholar
  6. 6.
    Genc, Y., Riedel, S., Souvannavong, F., Akinlar, C., Navab, N.: Marker-less tracking for AR: a learning-based approach. In: Proceedings of the International Symposium on Mixed and Augmented Reality, ISMAR, pp. 295–304, September 2002Google Scholar
  7. 7.
    Ohbuchi, E., Hanaizumi, H., Hock, L.: Barcode readers using the camera device in mobile phones. In: Proceedings of the 2004 International Conference on Cyberworlds, CW 2004, pp. 260–265 (2004)Google Scholar
  8. 8.
    Yahyanejad, S., Ström, J.: Removing motion blur from barcode images. In: Confernce on Computer Vision and Pattern Recognition Workshops, CVPRW 2010, pp. 41–46. IEEE Computer Society, June 2010Google Scholar
  9. 9.
    Shams, R., Sadeghi, P.: Bar code recognition in highly distorted and low resolution images. In: International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 1, pp. I-737-I-740. IEEE Computer Society, April 2007Google Scholar
  10. 10.
    Weichert, F., Böckenkamp, A., Prasse, C., Timm, C., Rudak, B., Hölscher, K., ten Hompel, M.: Towards sensor-actuator coupling in an automated order picking system by detecting sealed seams on pouch packed goods. J. Sens. Actuator Netw. 3(4), 245 (2014)CrossRefGoogle Scholar
  11. 11.
    Schweiger, F., Zeisl, B., Georgel, P., Schroth, G., Steinbach, E., Navab, N.: Maximum detector response markers for SIFT and SURF. In: Vision, Modeling and Visualization Workshop, VMV 2009. Eurographics Association, Braunschweig, pp. 1–10, November 2009Google Scholar
  12. 12.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). In: CVI, vol. 110. Elsevier Science Inc., New York (2008)Google Scholar
  13. 13.
    Bouguet, J.: Pyramidal implementation of the lucas kanade feature tracker, Intel Corp: Microprocessor Research Labs, Tech. Rep. (1999)Google Scholar
  14. 14.
    Gonzales, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall International (2002)Google Scholar
  15. 15.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press, August 1996Google Scholar
  16. 16.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional Inc., San Diego (1994)CrossRefGoogle Scholar
  17. 17.
    Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  18. 18.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adrian Böckenkamp
    • 1
    Email author
  • Frank Weichert
    • 1
  • Christian Prasse
    • 2
  1. 1.Department of Computer Science VIITechnical University of DortmundDortmundGermany
  2. 2.Fraunhofer Institute for Material Flow and LogisticsDortmundGermany

Personalised recommendations