Unsupervised Text Binarization in Handwritten Historical Documents Using k-Means Clustering

  • Huseyin KusetogullariEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 16)


In this paper, we propose a novel technique for unsupervised text binarization in handwritten historical documents using k-means clustering. In the text binarization problem, there are many challenges such as noise, faint characters and bleed-through and it is necessary to overcome these tasks to increase the correct detection rate. To overcome these problems, preprocessing strategy is first used to enhance the contrast to improve faint characters and Gaussian Mixture Model (GMM) is used to ignore the noise and other artifacts in the handwritten historical documents. After that, the enhanced image is normalized which will be used in the postprocessing part of the proposed method. The handwritten binarization image is achieved by partitioning the normalized pixel values of the handwritten image into two clusters using k-means clustering with k = 2 and then assigning each normalized pixel to the one of the two clusters by using the minimum Euclidean distance between the normalized pixels intensity and mean normalized pixel value of the clusters. Experimental results verify the effectiveness of the proposed approach.


Handwritten text binarization Image processing k-means clustering Document images 



This work is part of the research project “Scalable resource-efficient systems for big data analytics” funded by the Knowledge Foundation (grant: 20140032) in Sweden.


  1. 1.
    Gary, M.T.M., Poon, J.C.H.: A fuzzy-attributed graph approach to handwritten character recognition. In: Proceedings of the IEEE International Conference on Fuzzy System, pp. 570–575 (1993)Google Scholar
  2. 2.
    Chen, H., Tsai, S.S., Schroth, G., Chen, D.M., Grzeszczuk, R., Girod, B.: Robust text detection in natural images with edge-enhanced maximally stable extremal regions. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2609–2612 (2011)Google Scholar
  3. 3.
    Moghaddam, R.F., Cheriet, M.: A variational approach to degraded document enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1347–1361 (2010)CrossRefGoogle Scholar
  4. 4.
    Varghahan, B.Z., Amirani, M.C., Mihandoost, S.: Enhancement and cleaning of handwritten data by using neural networks and threshold technical. In: Proceedings of the IEEE International Conference on Application of Information and Communication Technologies, pp. 1–4 (2011)Google Scholar
  5. 5.
    Otsu, N.: A threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  6. 6.
    Moghaddam, R.F., Cheriet, M.: AdOtsu: an adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recogn. 45(6), 2419–2431 (2012)CrossRefGoogle Scholar
  7. 7.
    Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  8. 8.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  9. 9.
    Gatos, B., Ntrirogiannis, K., Pratikasis, I.: Dibco 2009: document image binarization contest. Int. J. Doc. Anal. Recogn., 1–10 (2010)Google Scholar
  10. 10.
    Su, B., Lu, S., Tan, C.L.: A self-training learning document binarization framework. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 3187-3190 (2010)Google Scholar
  11. 11.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: A combined approach for the binarization of handwritten document images. Pattern Recogn. Lett. 35, 3–15 (2014)CrossRefGoogle Scholar
  12. 12.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: Performance evaluation methodology for historical document image binarization. IEEE Trans. Image Process. 22(2), 595–609 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, Y., Leedham, G.: Decompose algorithm for thresholding degraded historical document images. IEE Proc. Vis. Image Sig. Process. 152(6), 702–714 (2005)CrossRefGoogle Scholar
  14. 14.
    Don, H.S.: A noise attribute thresholding method for document image binarization. Int. J. Doc. Anal. Recogn. 4(2), 131–138 (2001)CrossRefGoogle Scholar
  15. 15.
    Feng, M.L., Tan, Y.P.: Contrast adaotive binarization of low quality document images. IEICE Electron. Express 1(16), 501–506 (2004)CrossRefGoogle Scholar
  16. 16.
    Gatos, B., Pratikasis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recogn. 39(3), 317–327 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringBlekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations