Skip to main content

Machine Learning Approaches to Predict Repetitive Transcranial Magnetic Stimulation Treatment Response in Major Depressive Disorder

  • Conference paper
  • First Online:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (IntelliSys 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 16))

Included in the following conference series:

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is a non-pharmacological treatment that is associated with significant improvements in clinical symptoms of major depressive disorder (MDD). The efficacy of rTMS treatment can be predicted using pre-treatment cordance, a quantitative electroencephalography (QEEG) method extracting information from absolute and relative power of EEG spectra, that will prevent trial-and error treatment sequences, subject suffering and increase in health-care costs. In this study, pre-treatment QEEG data were collected from 6 frontal electrodes (Fp1, Fp2, F3, F4, F7 and F8) in slow bands (delta and theta) for 147 MDD subjects. In order to classify MDD subjects as responder or non-responder, four different machine learning techniques, which are Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Decision Tree (DT), were used and their performances were evaluated. The results show that it is possible to predict rTMS treatment responders with a sensitivity of 95.6%, accuracy of 86.4% and area under Receiver Operating Characteristics (ROC) curve (AUC) value of 0.92 using SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trivedi, M., Morris, D., Grannemann, B., et al.: Symptom clusters as predictors of late response to antidepressant treatment. J. Clin. Psychiatry 66, 1064–1070 (2005)

    Article  Google Scholar 

  2. Bares, M., Brunovsky, M., Novak, T., et al.: The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol. 20, 459–466 (2010)

    Article  Google Scholar 

  3. O’Reardon, J., Solvason, H., et al.: Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatry 62, 1208–1216 (2007)

    Article  Google Scholar 

  4. Im, C., Lee, C.: computer-aided performance evaluation of a multichannel transcranial magnetic stimulation system. IEEE Trans. Mag. 42, 3803–3808 (2006)

    Article  Google Scholar 

  5. Price, G., Lee, J., Garvey, C.: Appraisal of sessional EEG features as a correlate of clinical changes in an rTMS treatment of depression. Clin. EEG Neurosci. 39, 131–138 (2008)

    Article  Google Scholar 

  6. Micoulaud, J., Micoulaud-Franchi, J., Richieri, R.: Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study. J. Affect Disorders 137, 156–160 (2012)

    Article  Google Scholar 

  7. Kito, S., Hasegawa, T., Koga, Y.: Cerebral blood flow ratio of the dorsolateral prefrontal cortex to the ventromedial prefrontal cortex as a potential predictor of treatment response to transcranial magnetic stimulation in depression. Brain Stimul. 5, 547–553 (2012)

    Article  Google Scholar 

  8. Richieri, R., Boyer, L., Farisse, J., et al.: Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression. Eur. J. Nucl. Med. Mol. Imaging 38, 1715–1722 (2011)

    Article  Google Scholar 

  9. Schachter, S., Holmes, G., Kasteleijn-Nolst Trenite, D.: Behavioral aspects of epilepsy: principles and practice demos, pp. 268–269. Medical Publishing (2007)

    Google Scholar 

  10. Khodayari, A., Reilly, J., Hasey, G.: Using pre-treatment electroencephalography data to predict response to transcranial magnetic stimulation therapy for major depression. In: 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts, USA, August, 2011

    Google Scholar 

  11. Khodayari, A., Hasey, G., Maccrimmon, D.: A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy. Clin. Neurophysiol. 121, 1998–2006 (2010)

    Article  Google Scholar 

  12. Bares, M., Brunovsky, M., Kopecek, M., et al.: Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J. Psychiatr. Res. 41, 319–325 (2007)

    Article  Google Scholar 

  13. Yang, J., Singh, H., Hines, E., et al.: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55, 117–126 (2012)

    Article  Google Scholar 

  14. Sriraam, N., Eswaran, C.: Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals. IEEE Trans. Inf Technol. Biomed. 12, 87–93 (2012)

    Article  Google Scholar 

  15. Lima, C., Coelho, A.: Kernel machines for epilepsy diagnosis via EEG signal classification: A comparative study. Artif. Intell. Med. 53, 83–95 (2011)

    Article  Google Scholar 

  16. Siuly, S., Li, Y.: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 526–538 (2012)

    Article  Google Scholar 

  17. Rivero, D., Guo, L., Seoane, J., et al.: Using genetic algorithms and k-nearest neighbour for automatic frequency band selection for signal classification. IET Sig. Process. 20, 186–194 (2012)

    Article  MathSciNet  Google Scholar 

  18. Trujillo-Barreto, N., Aubert-Vázquez, E., Penny, W.: Bayesian M/EEG source reconstruction with spatio-temporal priors. Neuroimage 39, 318–335 (2008)

    Article  Google Scholar 

  19. Leuchter, A., Cook, I., Lufkin, R., et al.: Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage 3, 208–219 (1994)

    Article  Google Scholar 

  20. Leuchter, A., Uijtdehaage, S., Cook, I., et al.: Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Res. 90, 125–140 (1999)

    Article  Google Scholar 

  21. Tarhan, N., HizliSayar, G., Tan, O., et al.: Efficacy of high-frequency repetitive transcranial magnetic stimulation in treatment-resistant depression. Clin. EEG Neurosci. 43(4), 279–284 (2012)

    Article  Google Scholar 

  22. Hamilton, M.: A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (2009)

    Article  Google Scholar 

  23. Sivanandam, N., Sumathi, S., Deepa, S.: Introduction to Neural Networks using MATLAB 6.0, pp. 21–223. Tata McGraw-Hill Publishing company Limited, New Delhi (2008)

    Google Scholar 

  24. Lek, S., Guegan, J.: Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120, 65–73 (1999)

    Article  Google Scholar 

  25. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  26. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20, 273–297 (1994)

    MATH  Google Scholar 

  27. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  28. Goker, I., Osman, O., Ozekes, S., et al.: Classification of juvenile myoclonic epilepsy data acquired through scanning electromyography with machine learning algorithms. J. Med. Syst. 36, 2705–2711 (2012)

    Article  Google Scholar 

  29. Cervantes, J., Lamont, F.G.: Data selection based on decision tree for SVM classification on large data sets. Appl. Soft Comput. 37, 787–798 (2015)

    Article  Google Scholar 

  30. Hernanadez, J.: ROC curves for regression. Pattern Recogn. 46, 3395–3411 (2013)

    Article  MATH  Google Scholar 

  31. Ling, C., Huang, J., Zhang, H.: AUC: a statistically consistent and more discriminating measure than accuracy. In: Proceedings of the 18th International Conference on Artificial Intelligence, IJCAI 2003, pp. 519–524 (2003)

    Google Scholar 

  32. Arns, M., Drinkenburg, W., Fitzgerald, G., et al.: Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul. 5, 569–576 (2012)

    Article  Google Scholar 

  33. Kito, S., Hasegawa, T., Koga, Y.: Cerebral blood flow ratio of the dorsolateral prefrontal cortex to the ventromedial prefrontal cortex as a potential predictor of treatment response to transcranial magnetic stimulation in depression. Brain Stimul. 5, 547–553 (2012)

    Article  Google Scholar 

  34. Richieri, R., Boyer, L., Farisse, J., et al.: Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression. Eur. J. Nucl. Med. Mol. Imaging 38, 1715–1722 (2011)

    Article  Google Scholar 

  35. Khodayari, A., Reilly, J., Hasey, G., et al.: Using pre-treatment electroencephalography data to predict response to transcranial magnetic stimulation therapy for major depression. In: 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts (2011)

    Google Scholar 

  36. Khodayari, A., Hasey, G., Maccrimmon, D., et al.: A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy. Clin. Neurophysiol. 121, 1998–2006 (2010)

    Article  Google Scholar 

  37. O’Reardon, J., Solvason, H., Janicak, P., et al.: Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatr. 62, 1208–1216 (2007)

    Article  Google Scholar 

  38. Brakemeier, E., Wilbertz, G., Rodax, S.: Patterns of response to repetitive transcranial magnetic stimulation (rTMS) in major depression: replication study in drug-free patients. J. Affect Disorders 108, 59–70 (2008)

    Article  Google Scholar 

  39. Grazilla, O., William, P., Andre, M., et al.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. R. 36, 1140–1152 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to express their thanks to NPIstanbul Hospital for providing the required EEG data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turker Tekin Erguzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Erguzel, T.T., Tarhan, N. (2018). Machine Learning Approaches to Predict Repetitive Transcranial Magnetic Stimulation Treatment Response in Major Depressive Disorder. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. IntelliSys 2016. Lecture Notes in Networks and Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-56991-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56991-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56990-1

  • Online ISBN: 978-3-319-56991-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics