Advertisement

Using Machine Learning for Evaluating the Quality of Exercises in a Mobile Exergame for Tackling Obesity in Children

  • Lucas de Moura CarvalhoEmail author
  • Vasco Furtado
  • José Eurico de Vasconcelos Filho
  • Carminda Maria Goersch Fontenele Lamboglia
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 16)

Abstract

In this paper, we describe Mission Kid, a mobile exergame to tackle the obesity problem in children. Mission Kid involves a digital game played on the smartphone that requires the execution of physical exercises by the child. Smartphones are used for sensoring and processing the movements performed during the exercises. The application has an intelligent monitoring module for evaluating the quality of each physical exercise done by the child. The knowledge base produced by machine learning checks the quality of the workouts. This article describes the methodology used to build this knowledge base and details the strategy of machine learning which allows training the application to identify correct and incorrect movements made by a child. The results were acquired in terms of accuracy in identifying correct movements by Mission Kid using the knowledge base. Also the knowledge base was embedded in an Android application.

Keywords

Exergame Children obesity Activity recognition Gaming Classification 

Notes

Acknowledgment

Special thanks to University of Fortaleza’s Center of Application in Information Technology for the infrastructure assigned to the project and its Department of Physical Education for their support in carrying out the tests with the children.

References

  1. 1.
    Bailey, B.W., McInnis, K.: Energy cost of exergaming: a comparison of the energy cost of 6 forms of exergaming. Arch. Pediatr. Adolesc. Med. 165(7), 597–602 (2011)CrossRefGoogle Scholar
  2. 2.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Pervasive Computing, pp. 1–17. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Baughcum, A.E., Chamberlin, L.A., Deeks, C.M., Powers, S.W., Whitaker, R.C.: Maternal perceptions of overweight preschool children. Pediatrics 106(6), 1380–1386 (2000)CrossRefGoogle Scholar
  4. 4.
    Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z.: Off-task behavior in the cognitive tutor classroom: when students game the system. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 383–390. ACM (2004)Google Scholar
  5. 5.
    Baker, R.S.: Modeling and understanding students’ off-task behavior in intelligent tutoring systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1059–1068. ACM (2007)Google Scholar
  6. 6.
    Baracho, A.F.D.O., Gripp, F.J., Lima, M.R.D.: Os exergames e a educação física escolar na cultura digital. Rev. Bras. Ciênc. Esporte 34(1), 111–126 (2012)CrossRefGoogle Scholar
  7. 7.
    Bin Abdullah, M.F.A., Negara, A.F.P., Sayeed, M.S., Choi, D.J., Muthu, K.S.: Classification algorithms in human activity recognition using smartphones. Int. J. Comput. Inf. Eng. 6, 77–84 (2012)Google Scholar
  8. 8.
    Daley, A.J.: Can exergaming contribute to improving physical activity levels and health outcomes in children? Pediatrics 124(2), 763–771 (2009)CrossRefGoogle Scholar
  9. 9.
    Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 214–221. IEEE (2012)Google Scholar
  10. 10.
    Graves, L., Stratton, G., Ridgers, N.D., Cable, N.T.: Energy expenditure in adolescents playing new generation computer games. Br. J. Sports Med. 42(7), 592–594 (2008)Google Scholar
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  12. 12.
    IASO. International Association for the Study of Obesity. World map of obesity. http://www.iaso.org/resources/world-map-obesity/?map=children. Last access 27 Oct 2013
  13. 13.
    Johnson, C.L., Paulose-Ram, R., Ogden, C.L., et al.: National Health and Nutrition Examination Survey: Analytic guidelines, 1999–2010. National Center for Health Statistics. Vital Health Stat. 2(161), 1–15 (2013)Google Scholar
  14. 14.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011)CrossRefGoogle Scholar
  15. 15.
    Lamboglia, C., Frota, M.A., Catrib, A.M.F., Silva, C.A.B.D., Duarte, M., Vasconcelos, J.E.: Metodologia de enfrentamento a obesidade infantil apoiado por recurso digital interativo. Universidade de Fortaleza (2013)Google Scholar
  16. 16.
    Lane, H.C.: Intelligent tutoring systems: prospects for guided practice and efficient learning (2006)Google Scholar
  17. 17.
    Yang, J.: Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In: Proceedings of the 1st International Workshop on Interactive Multimedia for Consumer Electronics, pp. 1–10. ACM (2009)Google Scholar
  18. 18.
    Maddison, R., Foley, L., Mhurchu, C.N., Jiang, Y., Jull, A., Prapavessis, H., Hohepa, M., Rodgers, A.: Effects of active video games on body composition: a randomized controlled trial. Am. J. Clin. Nutr. 94(1), 156–163 (2011)CrossRefGoogle Scholar
  19. 19.
    Michael, D., Chen, S.: Serious Games: Games That Educate, Train, and Inform. Thomson Course Technology (2006)Google Scholar
  20. 20.
    Phillips, G., Felix, L., Galli, L., Patel, V., Edwards, P.: The effectiveness of M-health technologies for improving health and health services: a systematic review protocol. BMC Res. Notes 3(1), 250 (2010)CrossRefGoogle Scholar
  21. 21.
    Pritchard, M.: How to hurt the hackers: the scoop on Internet cheating and how you can combat it. Gamasutra, 24 July 2000Google Scholar
  22. 22.
    Sabourin, J., Rowe, J.P., Mott, B.W., Lester, J.C.: When off-task is on-task: the affective role of off-task behavior in narrative-centered learning environments. In: Artificial Intelligence in Education, pp. 534–536. Springer, Heidelberg (2011)Google Scholar
  23. 23.
    Silva, K.S.D., Nahas, M.V., Hoefelmann, L.P., Lopes, A.D.S., Oliveira, E.S.D.: Associações entre atividade física, índice de massa corporal e comportamentos sedentários em adolescentes. Rev. Bras. Epidemiol. 11(1), 159–168 (2008)CrossRefGoogle Scholar
  24. 24.
    Shayne, R.K., Fogel, V.A., Miltenberger, R.G., Koehler, S.: The effects of exergaming on physical activity in a third-grade physical education class. J. Appl. Behav. Anal. 45(1), 211–215 (2012)CrossRefGoogle Scholar
  25. 25.
    Rasekh, A., Chen, C.A., Lu, Y.: Human activity recognition using smartphone (2014). arXiv preprint: arXiv:1401.8212

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lucas de Moura Carvalho
    • 1
    Email author
  • Vasco Furtado
    • 2
  • José Eurico de Vasconcelos Filho
    • 1
  • Carminda Maria Goersch Fontenele Lamboglia
    • 3
  1. 1.Center of Application in Information TechnologyUniversity of FortalezaFortalezaBrazil
  2. 2.Laboratory of Knowledge EngineeringUniversity of FortalezaFortalezaBrazil
  3. 3.Department of Physical EducationUniversity of FortalezaFortalezaBrazil

Personalised recommendations