Advertisement

Visual Odometry for Pedestrians Based on Orientation Attributes of SURF

  • Chadly MarouaneEmail author
  • Robert Gutschale
  • Claudia Linnhoff-Popien
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 16)

Abstract

With the decreasing size and prize of cameras, visual positioning systems for persons are becoming more attractive and feasible. A main advantage of visual methods is that they can be independent of any infrastructure and are therefore applicable in indoor as well as outdoor scenarios. As such, they are an attractive alternative to infrastructure based methods. This paper presents a method that uses visual data to create a two-dimensional trajectory of the pedestrians movement. A camera that is mounted on the persons upper body is used to obtain the image data. With the SURF algorithm, feature points that posses specific attributes are extracted from the image frames. Based on these attributes, the method determines the pedestrians steps and estimates the heading at each step. As each determination of a new position is based on previous estimations, the method accumulates errors with increasing distances. An extensive evaluation with different test persons for various scenarios demonstrates that the method achieves a reasonably good overall accuracy for shorter distances. For distances of up to 25 m, a mean error of 5.52 m for indoor scenarios and of 7.56 m for outdoor scenarios has been determined. Furthermore, the method is also reliably functional at increasing walking and running speeds. An additional evaluation shows the usability of one of the SURF-attributes for the implementation of an activity detector for different movement speeds. The method robustly detects steps with a high accuracy at an error rate of approximately one percent. However, just like other Pedestrian Dead Reckoning methods, the heading estimation proves to be challenging and to be a source of errors.

Keywords

Visual odometry Visual pedometer Position measurement 

References

  1. 1.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Computer Vision - ECCV 2008. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE, June 2012Google Scholar
  3. 3.
    Alzantot, M., Youssef, M.: UPTIME: ubiquitious pedestrian tracking using mobile Phones. In: IEEE wireless Communications and Networking Conference 2012 (2012)Google Scholar
  4. 4.
    Bauer, J., Sünderhauf, N., Protzel, P.: Comparing several implementations of two recently published feature detectors. IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 6, pp. 143–148 (2007)Google Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Computer Vision - ECCV 2006, vol. 3951, pp. 404– 417 (2006)Google Scholar
  7. 7.
    Beauregard, S.: A helmet-mounted pedestrian dead reckoning system. In: Applied Wearable Computing, pp. 1–11 (2006)Google Scholar
  8. 8.
    Bebek, Ö., Suster, M.A., Rajgopal, S., Fu, M.J., Huang, X., Cavusoglu, M.C., Young, D.J., Mehregany, M., van den Bogert, A.J., Mastrangelo, C.H.: Personal navigation via high-resolution gait-corrected inertial measurement units. IEEE Trans. Instrum. Measur. 59(11), 3018–3027 (2010)CrossRefGoogle Scholar
  9. 9.
    Bekele, D., Teutsch, M., Schuchert, T.: Evaluation of binary keypoint descriptors. In: 2013 IEEE International Conference on Image Processing, pp. 3652–3656. IEEE, September 2013Google Scholar
  10. 10.
    Brajdic, A., Harle, R.: Walk detection and step counting on unconstrained smartphones. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp 2013, p. 225 (2013)Google Scholar
  11. 11.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Proceedings of the European Conference on Computer Vision, ECCV 2010, pp. 778–792 (2010)Google Scholar
  12. 12.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)CrossRefGoogle Scholar
  13. 13.
    Canny, J.F.: Finding Edges and Lines in Images. Technical report (1983)Google Scholar
  14. 14.
    Corke, P., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 4, pp. 2–7 (2004)Google Scholar
  15. 15.
    DiVerdi, S., Hollerer, T.: Heads up and camera down: a vision-based tracking modality for mobile mixed reality. IEEE Trans. Vis. Comput. Graph. 14(3), 500–512 (2008)CrossRefGoogle Scholar
  16. 16.
    Goyal, P., Ribeiro, V.J., Saran, H., Kumar, A.: Strap-down pedestrian dead-reckoning system. In: 2011 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2011 (2011)Google Scholar
  17. 17.
    Groves, P., Pulford, G., Littlefield, C., Nash, D., Mather, C.: Inertial navigation versus pedestrian dead reckoning: Optimizing the integration (2007)Google Scholar
  18. 18.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference 1988, pp. 23.1–23.6. Alvey Vision Club (1988)Google Scholar
  19. 19.
    Heinly, J., Dunn, E., Frahm, J.M.: Comparative evaluation of binary features. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS (PART II), vol. 7573, pp. 759–773 (2012)Google Scholar
  20. 20.
    Jiménez, A.R., Seco, F., Prieto, C., Guevara, J.: A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In: WISpp 2009–6th IEEE International Symposium on Intelligent Signal Processing - Proceedings, pp. 37–42 (2009)Google Scholar
  21. 21.
    Jiménez, A.R., Seco, F., Zampella, F., Prieto, J.C., Guevara, J.: PDR with a foot-mounted IMU and ramp detection. Sensors 11(12), 9393–9410 (2011)CrossRefGoogle Scholar
  22. 22.
    Jin, Y., Toh, H.S., Soh, W.S., Wong, W.C.: A robust dead-reckoning pedestrian tracking system with low cost sensors. In: 2011 IEEE International Conference on Pervasive Computing and Communications, PerCom 2011, pp. 222–230 (2011)Google Scholar
  23. 23.
    Kang, W., Nam, S., Han, Y., Lee, S.: Improved heading estimation for smartphone-based indoor positioning systems. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, pp. 2449–2453 (2012)Google Scholar
  24. 24.
    Kawaji, H., Hatada, K., Yamasaki, T., Aizawa, K.: Image-based indoor positioning system. In: Proceedings of the 1st ACM International Workshop on Multimodal Pervasive Video Analysis - MPVA 2010, p. 1 (2010)Google Scholar
  25. 25.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2004)Google Scholar
  26. 26.
    Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 486–492 (2010)Google Scholar
  27. 27.
    Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multi-person tracking for EasyLiving. In: Proceedings Third IEEE International Workshop on Visual Surveillance, pp. 1–8 (2000)Google Scholar
  28. 28.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555. IEEE, November 2011Google Scholar
  29. 29.
    Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int. J. Comput. Vis. 11(3), 283–318 (1993)CrossRefGoogle Scholar
  30. 30.
    Liu, D., Shan, Q., Wu, D.: Toward a visual pedometer. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC 2012, p. 1025 (2012)Google Scholar
  31. 31.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  32. 32.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  33. 33.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars Exploration Rovers. J. Field Robot. 24(3), 169–186 (2007)CrossRefGoogle Scholar
  34. 34.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS (PART II), vol. 6312, pp. 183–196 (2010)Google Scholar
  35. 35.
    Marouane, C., Maier, M., Feld, S., Werner, M.: Visual positioning systems - an extension to MoVIPS. In: 5th International Conference on Indoor Positioning and Indoor Navigation (IPIN 2014), (Section III) (2014)Google Scholar
  36. 36.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)CrossRefGoogle Scholar
  37. 37.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)CrossRefGoogle Scholar
  38. 38.
    Moravec, H.P.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Ph.D. thesis (1980)Google Scholar
  39. 39.
    Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Comput. 8(2), 22–31 (2009)CrossRefGoogle Scholar
  40. 40.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, vol. 1, pp. 652–659 (2004)Google Scholar
  41. 41.
    Nourani-Vatani, N., Roberts, J., Srinivasan, M.V.: Practical visual odometry for car-like vehicles. In: Proceedings - IEEE International Conference on Robotics and Automation, (JUNE 2009), pp. 3551–3557 (2009)Google Scholar
  42. 42.
    Oskiper, T., Zhu, Z., Samarasekera, S., Kumar, R.: Visual odometry system using multiple stereo cameras and inertial measurement unit. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8, December 2015Google Scholar
  43. 43.
    Pratama, A.R., Widyawan, Hidayat, R.: Smartphone-based pedestrian dead reckoning as an indoor positioning system. In: Proceedings of the 2012 International Conference on System Engineering and Technology, ICSET 2012 (2012)Google Scholar
  44. 44.
    Randell, C., Djiallis, C., Muller, H.: Personal position measurement using dead reckoning. In: Seventh IEEE International Symposium on Wearable Computers, 2003, Proceedings (2003)Google Scholar
  45. 45.
    Rosin, P.L.: Measuring corner properties. Comput. Vis. Image Underst. 73(2), 291–307 (1999)CrossRefGoogle Scholar
  46. 46.
    Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. I and II, pp. 1508–1515, vol. 2. IEEE (2005)Google Scholar
  47. 47.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 3951, pp. 430–443 (2006)Google Scholar
  48. 48.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE, November 2011Google Scholar
  49. 49.
    Scaramuzza, D., Fraundorfer, F.: Visual odometry - Part I: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18, 80–92 (2011)CrossRefGoogle Scholar
  50. 50.
    Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC. In: 2009 IEEE International Conference on Robotics and Automation, pp. 4293–4299 (2009)Google Scholar
  51. 51.
    Werner, M., Kessel, M., Marouane, C.: Indoor positioning using smartphone camera. In: 2011 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2011, pp. 21–23, September 2011Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Chadly Marouane
    • 1
    Email author
  • Robert Gutschale
    • 2
  • Claudia Linnhoff-Popien
    • 2
  1. 1.Ludwig Maximilian University, VIRALITY GmbHMunichGermany
  2. 2.Ludwig Maximilian UniversityMunichGermany

Personalised recommendations