The Atlantic Goliath Grouper: Conservation Strategies for a Critically Endangered Species in Brazil

  • Maurício Hostim-SilvaEmail author
  • Áthila A. Bertoncini
  • Maíra Borgonha
  • Jonas Rodrigues Leite
  • Matheus O. Freitas
  • Felippe Alexandre Daros
  • Leonardo S. Bueno
  • Ana Paula C. Farro
  • Christopher C. Koenig
Part of the Coastal Research Library book series (COASTALRL, volume 22)


Commonly known as the Atlantic Goliath Grouper, Epinephelus itajara (Lichtenstein 1822) is a marine fish in the family Epinephelidae. Because of slow growth, late maturity, large adult size (up to 2 m long and weighing 400 kg), and shallow coastal habitats, the species is highly vulnerable to anthropogenic activities, such as fishing and activities that cause habitat loss and reduce water quality. This endangered species (IUCN) is at great risk of being lost from Brazilian waters.


  1. Albuquerque CQ, Miekeley N, Muelbert JH (2012) Whitemouth croaker, Micropogonias furnieri, trapped in a freshwater coastal lagoon: a natural comparison of freshwater and marine influences on otoliths chemistry. Neotrop Ichthyol 8(2):311–320. doi: CrossRefGoogle Scholar
  2. Altenritter ME, Kinnison MT (2015) Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories. Environ Biol Fish 98:2321–2335CrossRefGoogle Scholar
  3. Artero C, Murie DJ, Koenig CC et al (2015) Age, growth, and mortality of the Atlantic Goliath Grouper Epinephelus itajara in French Guiana. Endanger Species Res 28:275–287Google Scholar
  4. Babbie E (2012) The practice of social research, 13th edn. Wadsworth, BelmontGoogle Scholar
  5. Begossi A (1993) Ecologia humana: um enfoque das relações homem-ambiente. Interciencia 18(3):121–132PubMedGoogle Scholar
  6. Begossi A (2010) Small-scale fisheries in Latin America: management models and challenges. MAST 9:7–31Google Scholar
  7. Benevides EA, Vallinoto MNS, Fetter Filho AFH et al (2014) When physical oceanography meets population genetics: the case study of the genetic/evolutionary discontinuity in the endangered Atlantic Goliath Grouper (Epinephelus itajara; Perciformes: Epinephelidae) with comments on the conservation of the species. Biochem Syst Ecol 56:255–266Google Scholar
  8. Bertoncini AA, Borgonha M, Bueno L et al (2012) Reef fish aggregations in Southern Brazil: Pró - Arribada and Meros do Brasil Initiatives. In: Proceedings of the 65th Gulf and Caribbean Fisheries Institute. GCFI, Santa Marta, pp 287–292Google Scholar
  9. Bradbury IR, Campana SE, Bentzen P (2008) Estimating contemporary early life history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches. Mol Ecol 17:1438–1450CrossRefPubMedGoogle Scholar
  10. Brusher JH, Schull J (2009) Non-lethal age determination for juvenile Goliath Grouper Epinephelus itajara from southwest Florida. Endanger Species Res 7:205–212Google Scholar
  11. Bueno GW, Ostrensky A, Canzi C, De Matos F et al (2015) Implementation of aquaculture parks in Federal Government waters in Brazil. Rev Aquac 7:1–12CrossRefGoogle Scholar
  12. Bueno LS, Bertoncini AA, Koenig CC et al (2016) Evidence for spawning aggregations of the endangered Atlantic Goliath Grouper Epinephelus itajara in southern. J Fish Biol 89:876–889. doi: 10.1111/jfb.13028
  13. Bullock LH, Murphy MD, Godcharles MF, Mitchell ME (1992) Age, growth, and reproduction of jewfish Epinephelus itajara in the eastern Gulf of Mexico. Fish Bull 90:243–249Google Scholar
  14. Campana SE, Chouinard GA, Hanson JM, Fréchet A et al (2000) Otolith elemental fingerprints as biological tracers of the fish stocks. Fish Res 46:343–357CrossRefGoogle Scholar
  15. Cawthorn DM, Steinman HA, Witthuhn RC (2012) DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African Market. Food Res Int 46:30–40CrossRefGoogle Scholar
  16. Clarke AD, Telmer KH, Shrimpton JM (2007) Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecol Freshw Fish 16:354–361CrossRefGoogle Scholar
  17. Cloud JG, Miller WH, Levanduski MJ (1990) Cryopreservation of sperm as a means to store salmonid germ plan and to transfer genes from wild fish to hatchery populations. Prog Fish Cult 52(1):51–53CrossRefGoogle Scholar
  18. Colombo RE, Wills PS, Garvey JE (2004) Use of ultrasound imaging to determine sex of shovelnose sturgeon. N Am J Fish Manag 24(1):322–326CrossRefGoogle Scholar
  19. Cook GS (2014) Population connectivity shifts at high frequency within an open-coast marine protected area network. PLoS One 9(7):e103654CrossRefPubMedPubMedCentralGoogle Scholar
  20. Correia AT, Manso S, Coimbra J (2009) Age, growth and reproductive biology of the European conger eel (Conger conger Linnaeus, 1758) from the Atlantic Iberian waters. Fish Res 99:196–202CrossRefGoogle Scholar
  21. Correia AT, Barros F, Sial AN (2011) Stock discrimination of European conger eel (Conger conger L.) using otolith stable isotope ratios. Fish Res 108:88–94CrossRefGoogle Scholar
  22. Craig MT (2011) Epinephelus itajara. The IUCN Red List of Threatened Species 2011: e.T195409A8961414. Available via IUCN Red list. Accessed 15 Oct 2016
  23. Craig MT, Hastings PA (2007) Molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyol Res 54:1–17CrossRefGoogle Scholar
  24. Craig MT, Pondella DJ II, Hafner JC et al (2001) On the status of the serranid fish genus Epinephelus: evidence for paraphyly based on 16S rDNA sequences. Mol Phylogenet Evol 19:121–130CrossRefPubMedGoogle Scholar
  25. Craig MT, Graham RT, Torres RA et al (2009a) How many species of Atlantic Goliath Grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species. Endanger Species Res 7:167–174Google Scholar
  26. Craig JM, Papoulias DM, Thomas MV et al (2009b) Sex assignment of lake sturgeon (Acipenser fluvescens) based on plasma sex hormone and vitellogenin levels. J Appl Ichthyol 25(Sup 2):60–67Google Scholar
  27. Cunjak RA, Roussel JM, al GMA e (2005) Using stable isotope analysis with telemetry or mark-recapture data to identify fish movement and foraging. Oecologia 144:636–646CrossRefPubMedGoogle Scholar
  28. Damasceno JS, Siccha-Ramirez R, Morales MJA et al (2015) Mitochondrial DNA evidences reflect an incipient population structure in Atlantic Goliath Grouper (Epinephelus itajara, Epinephelidae) in Brazil. Sci Mar 79(4):419–429Google Scholar
  29. Damasceno JS, Siccha-Ramirez R, Oliveira C et al (2016) Molecular identification of Atlantic Goliath Grouper Epinephelus itajara (Lichtenstein, 1822) (Perciformes: Epinephelidae) and related commercial species applying multiplex PCR. Neotrop Ichthyol 14(3):e150128. doi: 10.1590/1982-0224-20150128
  30. Daros FA, Spach HL, Correia AT (2016) Habitat residency and movement patterns of Centropomus parallelus juveniles in a subtropical estuarine complex. J Fish Biol 88:1796–1810. doi: 10.1111/jfb.12944 CrossRefPubMedGoogle Scholar
  31. Di Franco A, De Benedetto G, De Rinaldis G et al (2011) Large scale-variability in otolith microstructure and microchemistry: the case study of Diplodus sargus sargus (Pisces: Sparidae) in the Mediterranean Sea. Ital J Zool 78(2):182–192CrossRefGoogle Scholar
  32. Di Pinto A, Di Pinto P, Terio V et al (2013) DNA barcoding for detecting market substitution in salted cod fillets and battered cod chunks. Food Chem 141:1757–1762CrossRefPubMedGoogle Scholar
  33. Diegues AC (2000) Etnoconservação da natureza: Enfoques alternativos. In: Diegues AC (ed) Etnoconservação: Novos rumos para a proteção da natureza nos trópicos. 2a. Edição. NUPAUB-USP: HUCITEC, São Paulo, pp 01–46Google Scholar
  34. Eklund AM, Schull J (2001) A stepwise approach to investigate the movement patterns and habitat utilization of Goliath Grouper, Epinephelus itajara, using conventional tagging, acoustic telemetry and satellite tracking. In: Sibert JR, Nielsen JL (eds) Electronic tagging and tracking in marine fisheries. Springer, Dordrecht/London, p 456Google Scholar
  35. Erickson CM (1983) Age determination of Manitoban Walleyes using otoliths, dorsal spines, and scales. N Am J Fish Manag 3(2):176–181CrossRefGoogle Scholar
  36. Ferreira BP, Maida M (1995) Projeto Mero: apresentação de resultados preliminares. Bol Téc Cient Cepene 3(1):210–210Google Scholar
  37. Ferreira HM, Reuss-Strenzel GM, Alves J et al (2014) Local ecological knowledge of the artisanal fishers on Epinephelus itajara (Lichtenstein, 1822) (Teleostei: Epinephelidae) on Ilhéus coast – Bahia State, Brazil. J Ethnobiol Ethnomed 10(1). doi: 10.1186/1746-4269-10-51
  38. Ferrito V, Bertolino V, Pappalardo AM (2016) White fish authentication by COIBar – RFLP: toward a common strategy for the rapid identification of species in convenience seafood. Food Control 70:130–137CrossRefGoogle Scholar
  39. Food and Agriculture Organization of the United Nations (2013) A global assessment of offshore mariculture potential from a spatial perspective. Fao Fisheries and Aquaculture Technical Paper 549, Rome, p 202Google Scholar
  40. Food and Agriculture Organization of the United Nations (2014) The state of world fisheries and aquaculture. Opportunities and challenges, Rome, p 243Google Scholar
  41. Food and Agriculture Organization of the United Nations (2016) The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. Rome, p 204Google Scholar
  42. Francis RICC, Campana SE (2004) Inferring age from otolith measurements: a review and a new approach. Can J Fish Aquat Sci 61:1269–1284CrossRefGoogle Scholar
  43. Freitas MO, Abilhoa V, Giglio VJ et al (2015) Diet and reproduction of the Goliath Grouper, Epinephelus itajara (Actinopterygii: Perciformes: Serranidae), in eastern Brazil. Acta Ichthyol Piscat 45:1–11Google Scholar
  44. Geffen AJ, Nash RDM, Dickey-Collas M (2011) Characterization of herring populations West of the British Isles: an investigation of mixing based on otolith microchemistry. ICES J Mar Sci 68(7):1447–1458CrossRefGoogle Scholar
  45. Gerhardinger LC, Bertoncini AA, Hostim-Silva M (2006a) Local ecological knowledge and Goliath Grouper spawning aggregations in the South Atlantic Ocean: Goliath Grouper spawning aggregations in Brazil. SPC Tradit Mar Resour Manag Knowl Inform Bull 20:33–34Google Scholar
  46. Gerhardinger LC, Marenzi RC, Bertoncini AA et al (2006b) Local ecological knowledge on the Goliath Grouper Epinephelus itajara (teleostei: serranidae) in southern Brazil. Neotrop Ichthyol 4(4):441–450. doi:
  47. Gerhardinger LC, Freitas MO, Bertoncini AA et al (2007a) Collaborative approach in the research of Dusky grouper reproductive biology (Epinephelus marginatus, LOWE, 1834) (Perciformes: Serranidae, Epinephelinae). Acta Sci 28:219–226Google Scholar
  48. Gerhardinger LC, Medeiros RP, Marenzi RC et al (2007b) Local ecological knowledge on the planning and management of marine protected areas and conservation of fish spawning aggregations: the experience of Meros do Brasil Project. In: Prates AP, Blanc D (eds) Áreas Aquáticas Protegidas como Instrumento de Gestão Pesqueira. Áreas Protegidas do Brasil vol 4. Ministério do Meio Ambiente, Brasília, pp 106–129Google Scholar
  49. Gerhardinger LC, Hostim-Silva M, Medeiros RP et al (2009) Fishers’ resource mapping and Goliath Grouper Epinephelus itajara (Serranidae) conservation in Brazil. Neotrop Ichthyol 7:93–102Google Scholar
  50. Giglio VJ, Alves JA, Bertoncini AA (2014a) Using scars to photo-identify the Goliath Grouper, Epinephelus itajara. Mar Biodivers Rec 7:1–4Google Scholar
  51. Giglio VJ, Alves JA, Gerhardinger LC et al (2014b) Habitat use and abundance of Goliath Grouper Epinephelus itajara in Brazil: a participative survey. Nat Conserv 12:118–123Google Scholar
  52. Goswami M, Mishra A, Ninawe NS et al (2016) Bio-banking: an emerging approach for conservation of fish germplasm. Poult Fish Wildlife Sci 4:143. doi: 10.4172/2375-446X.1000143 Google Scholar
  53. Goulette GS, Hawkes JP, Kocik JF (2014) Opportunistic acoustic telemetry platforms: benefits of collaboration in the Gulf of Maine. Fisheries 39:441–450CrossRefGoogle Scholar
  54. Graham CT, Harrison SS, Harrod C (2013) Development of non-lethal sampling of carbon and nitrogen stable isotope ratios in salmonids: effects of lipid and inorganic components of fins. Isot Environ Health Stud 49:555–566CrossRefGoogle Scholar
  55. Haines EB (1976) Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnol Oceanogr 21:880–883CrossRefGoogle Scholar
  56. Hamer PA, Acevedo S, Jenkins GP et al (2011) Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment. J Fish Biol 78:1090–1109CrossRefPubMedGoogle Scholar
  57. Harrod C, Grey J, McCarthy TK, Morrissey M (2005) Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel. Oecologia 144:673–683CrossRefPubMedGoogle Scholar
  58. Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hostim-Silva M, Bertoncini AA, Gerhardinger LC et al (2005) The Lord of the Rocks conservation program in Brazil: the need for a new perception of marine fishes. Coral Reefs 24:74. doi: 10.1007/s00338-004-0437-3 CrossRefGoogle Scholar
  60. Jardine TD, Hunt RJ, Pusey BJ, Bunn SE (2011) A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes. Mar Freshw Res 62:83–90CrossRefGoogle Scholar
  61. Jesus L, Pereira G, Cristina S, Fernandes P et al (2016) Conhecimento ecológico local sobre o Mero Epinephelus itajara (Lichtenstein, 1822) no Nordeste Paraense Amazônico. Biota Amazônia 6(2):110–119CrossRefGoogle Scholar
  62. Johannes RE (2002) The renaissance of community-based marine resource management in Oceania. Annu Rev Ecol Evol Syst 33:317–340CrossRefGoogle Scholar
  63. Kelly MH, Hagar WG, Jardine TD, Cunjak RA (2006) Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue. N Am J Fish Manag 26:921–925CrossRefGoogle Scholar
  64. Koenig CC, Coleman FC (2016) Regional age structure, reproductive biology and trophic patterns of adult Goliath Grouper in Florida. Final Report. NOAA/NMFS Project Project NA11NMF4330123, 162ppGoogle Scholar
  65. Koenig CC, Bueno LS, Coleman FC et al (2016) Diel, lunar, and seasonal spawning patterns of the Atlantic Goliath Grouper, Epinephelus itajara, off Florida, United States. Bull Mar Sci 92. doi:
  66. Kynard B, Kieffer (2002) Use of a borescope to determine the sex and egg maturity stage of sturgeons and the effect of borescope use on reproductive structures. J Appl Ichthyol 18:505–508CrossRefGoogle Scholar
  67. Leite MCF, Gasalla MA (2013) A method for assessing fishers’ ecological knowledge as a practical tool for ecosystem-based fisheries management: seeking consensus in Southeastern Brazil. Fish Res 145:43–53. doi: CrossRefGoogle Scholar
  68. Leite JR, Bueno LS, Alves JA et al (2012) Description of different color displays of Goliath Grouper on aggregations in Santa Catarina, Brazil. In: 12th international coral reef symposium, Cairns, Australia. Book of abstracts 12th ICRS, 2012Google Scholar
  69. Linley T, Krogstad EJ, Nims NK et al (2016) Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington. Fish Res 181:234–246CrossRefGoogle Scholar
  70. Maggio T, Andaloro F, Arculeo M (2006) Genetic population structure of Epinephelus marginatus (Pisces, Serranidae) revealed by two molecular markers. Ital J Zool 73:275–283CrossRefGoogle Scholar
  71. Maida M, Ferreira BP (1997) Coral reefs of Brazil: an overview. In: Abstracts Proceedings of the 8th international coral reef symposium 1997 1:263–274Google Scholar
  72. Mann DA, Locascio JV, Coleman FC, Koenig CC (2009) Goliath Grouper Epinephelus itajara sound production and movement patterns on aggregation sites. Endanger Species Res 7:229–236Google Scholar
  73. Marques JGW (1991) Aspectos Ecológicos na Etnoictiologia dos Pescadores do Complexo Estuarino-Lagunar Mundaú-Manguaba. Universidade Estadual de Campinas, AlagoasGoogle Scholar
  74. Marques JG (2001) Pescando Pescadores: Ciência e etnociência em uma perspectiva ecológica. 2a. NUPAUB/USP, São PauloGoogle Scholar
  75. Mazzei EF, Bertoncini AA, Pinheiro HT et al (2016) Newly discovered reefs in the southern Abrolhos Bank, Brazil: anthropogenic impacts and urgent conservation needs. Mar Pollut Bull. doi: 10.1016/j.marpolbul.2016.08.059
  76. McLean E (1994) Microsurgery: gonadectomy. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 3. Elsevier Science, Amsterdam, pp 63–75Google Scholar
  77. Mendoza RPR (2006) Otoliths and their applications in fishery science. Ribarstvo 64:89–102Google Scholar
  78. Ministério do Meio Ambiente (2014) Lista oficial das espécies da fauna brasileira ameaçadas de extinção. MMA, Brasília, Portaria n 445Google Scholar
  79. Ministério do Meio Ambiente (2015) Plano de Ação Nacional para a Conservação das Espécies Ameaçadas e de Importância Socioeconômica do Ecossistema Manguezal (PAN Manguezal). Brasília Portaria n 9Google Scholar
  80. Mourão JS, Nordi N (2006) Pescadores, peixes, espaço e tempo: uma abordagem etnoecológica. Interciencia 31:358–363Google Scholar
  81. Murie DJ, Parkyn DC, Koenig CC et al (2009) Evaluation of finrays as a non-lethal ageing method for protected Goliath Grouper Epinephelus itajara. Endanger Species Res 7:213–220Google Scholar
  82. Norris DO, Lopez KH (2011) The endocrinology of the mammalian ovary. In: Norris DO, Lopez KH (eds) Hormones and reproduction of vertebrates. Elsevier, Amsterdam, pp 59–72Google Scholar
  83. Palmeira CAM, Rodrigues-Filho LFS, Sales JBL et al (2013) Commercialization of a critically endangered species (largetooth sawfish, Pristis perotteti) in fish markets of northern Brazil: authenticity by DNA analysis. Food Control 34:249–252CrossRefGoogle Scholar
  84. Palumbi SR, Gaines SD, Leslie H et al (2013) New wave: high-tech tools to help marine reserve research. Front Ecol Environ 1(2):73–79CrossRefGoogle Scholar
  85. Pandian TJ (2011) Sex determination in fish. CRC Press, Boca Raton, p 276CrossRefGoogle Scholar
  86. Pasten GP (2016) Qué es la esclerocronología? Accessed in 20 Aug 2016
  87. Pina-Amargós F, González-Sansón G (2009) Movement of Goliath Grouper (Epinephelus itajara) in southeast Cuba: implications for its conservation. Endanger Species Res 7:243–247Google Scholar
  88. Pinheiro L (2004) Da ictiologia ao etnoconhecimento: saberes populares, percepção ambiental e senso de conservação em comunidade ribeirinha do rio Piraí, Joinville, Estado de Santa Catarina. Acta Sci 26(3):325–334. doi: 10.4025/actascibiolsci.v26i3.1594 Google Scholar
  89. Qu M, Zhang X, Ding S (2012) Complete mitochondrial genome of yellow grouper Epinephelus awoara (Perciformes, Epinephelidae). Mitochondrial DNA 23(6):432–434CrossRefPubMedGoogle Scholar
  90. Ramírez MA, Patricia-Acevedo J, Planas S et al (2006) New microsatellite resources for groupers (Serranidae). Mol Ecol Resour 6(3):813–817CrossRefGoogle Scholar
  91. Reis-Santos P, Gillanders BM, Tanner SE et al (2012) Temporal variability in estuarine fish otolith elemental fingerprints: implications for connectivity assessments. Estuar Coast Shelf Sci 112:216–224CrossRefGoogle Scholar
  92. Rivera MAJ, Kelley CD, Roderick GK (2004) Subtle population genetic structure in the Hawaiian Grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses. Biol J Linn Soc 81:449–468CrossRefGoogle Scholar
  93. Sadovy Y, Eklund AM (1999) Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the jewfish, E. itajara (Lichtenstein, 1822). NOAA Technical Report NMFS 146.Google Scholar
  94. Sadovy Y, Shapiro DY (1987) Criteria for the diagnosis of hermaphroditism in fishes. Copeia 1:136–156. doi: 10.2307/1446046 CrossRefGoogle Scholar
  95. Sadovy de Mitcheson Y, Colin PL (eds) (2012) Reef fish spawning aggregations: biology, research and management, vol 35: Fish and fisheries. Springer, New YorkGoogle Scholar
  96. Sadovy de Mitcheson Y, Liu M (2008) Functional hermaphroditism in teleosts. Fish Fish 9:1–43CrossRefGoogle Scholar
  97. Sadovy de Mitcheson Y, Craig MT, Bertoncini AA et al (2013) Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish 14:119–136. doi: 10.1111/j.1467-2979.2011.00455.x CrossRefGoogle Scholar
  98. Sanches EG (2007) Piscicultura marinha no Brasil: uma alternativa de produção e conservação. Aqüicultura e Pesca nov/dez:16–22Google Scholar
  99. Sanches EG, Oliveira IR, Serralheiro PC (2009) Inversão sexual da garoupa-verdadeira Epinephelus marginatus. Rev Bras Saúde Prod Anim 10:198–209Google Scholar
  100. Sanches EG, Tosta GAM, Souza-Filho JJ (2013) Viabilidade econômica da produção de formas jovens de bijupirá (Rachycentron canadum). Bol Inst Pesca 39(1):15–26Google Scholar
  101. Sanches EG, Silva FC, Herrera LA (2015) Anormalidades esqueléticas em meros. Bol Inst Pesca 42:191–198Google Scholar
  102. Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377CrossRefGoogle Scholar
  103. Serviço Brasileiro de Apoio às Micro e Pequenas Empresas (2015) Aquicultura no Brasil. Série estudos mercadológicos, p 76Google Scholar
  104. Seyoum S, Tringali MD, Barthel BL et al (2013) Isolation and characterization of 29 polymorphic microsatellite markers for the endangered Atlantic Goliath Grouper (Epinephelus itajara), and the Pacific Goliath Grouper (E. quinquefasciatus). Conserv Genet Resour 5:729–732Google Scholar
  105. Shideler GS, Pierce B (2016) Recreational diver willingness to pay for Goliath Grouper encounters during the months of their spawning aggregation off eastern Florida, USA. Ocean Coast Manag 129:36–43. Scholar
  106. Silva DM, Santos P, Correia AT (2011) Discrimination of Trisopterus luscus stocks in the northern of Portugal using otolith elemental fingerprints. Aquat Living Resour 24:85–91CrossRefGoogle Scholar
  107. Silva FC, Leite JR, Hostim-Silva M, Valença AR, Sanches EG (2014) First record of Neobenedenia melleni like species (Monogenae: Capsalidae) in Goliath Grouper (Epinephelus itajara) in Brazil. Rev Bras Parasitol Ve 23(1):248–250.
  108. Silva-Oliveira GC, Rêgo PS, Schneider H et al (2008) Genetic characterization of populations of the critically endangered Atlantic Goliath Grouper (Epinephelus itajara, Serranidae) from the Northern Brazilian coast through analyses of mtDNA. Genet Mol Biol 31(4):988–994Google Scholar
  109. Silva-Oliveira GC, Silva ABC, Oliveira Y et al (2013) New nuclear primers for molecular studies of Epinephelidae fishes. Conserv Genet Resour 5:165–168CrossRefGoogle Scholar
  110. Sinnatamby RN, Bowman JE, Dempson JB, Power M (2007) An assessment of de-calcification procedures for d13C and d15N analysis of yellow perch, walleye and Atlantic salmon scales. J Fish Biol 70:1630–1635CrossRefGoogle Scholar
  111. Smith SJ, Campana SE (2010) Integrated stock mixture analysis for continuous and categorical data, with application to genetic–otolith combinations. Can J Fish Aquat Sci 67:1533–1567CrossRefGoogle Scholar
  112. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384CrossRefPubMedPubMedCentralGoogle Scholar
  113. Smith KT, Whitledge GW (2010) Fin ray chemistry as a potential natural tag for Smallmouth Bass in Northern Illinois Rivers. J Freshw Ecol 25(4):627–635CrossRefGoogle Scholar
  114. Specker JL, Anderson TR (1994) Developing an ELISA for a model protein – vitellogenin. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 3. Elsevier Science, Amsterdam, p 718Google Scholar
  115. Stephenson RL (1999) Stock complexity in fisheries management: a perspective of emerging issues related to population sub-units. Fish Res 43:247–249CrossRefGoogle Scholar
  116. Syukur A, Mahrus SAR (2016) The potential assessment environment friendly aquaculture of small-scale fishermen as a conservation strategy seagrass beds in coastal areas of Tanjung Luar East Lombok Indonesia. Int J Fish Aquat Stud 4(2):22–27Google Scholar
  117. Toledo VM, Barrera-Bassols N (2009) A etnoecologia: uma ciência pós-normalque estuda as sabedorias tradicionais. Desenvolv Meio Amb 20:31–45. doi: Google Scholar
  118. Torres RA, Feitosa RB, Carvalho DC et al (2013) DNA barcoding approaches for fishing authentication of exploited grouper species including the endangered and legally protected Goliath Grouper Epinephelus itajara. Sci Mar 77(3):409–418Google Scholar
  119. Tzadik OE, Goddard EA, Hollander DJ et al (2015) Non-lethal approach identifies variability of δ 15N values in the fin rays of Atlantic Goliath Grouper, Epinephelus itajara. Peer J 3:e1010. doi: 10.7717/peerj.1010
  120. Vander Zanden MJ, Hulshof M, Ridgway MS et al (1998) Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. T Am Fish Soc 127:729–739CrossRefGoogle Scholar
  121. Vander Zanden MJ, Shuter BJ, Lester NP et al (2000) Within- and among-population variability in the trophic position of a pelagic predator, lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 57:725–731CrossRefGoogle Scholar
  122. Vasconcelos RP, Reis-Santos P, Fonseca V et al (2009) Juvenile fish condition in estuarine nurseries along the Portuguese coast. Estuar Coast Shelf Sci 82:128–138CrossRefGoogle Scholar
  123. Vecsei P, Litvak MK, Noakes DLG et al (2003) A noninvasive technique for determining sex of live adult North American sturgeons. Environ Biol Fish 68:333–338CrossRefGoogle Scholar
  124. Veinott GI, Evans RD (1999) An examination of elemental stability in the Fin Ray of the White Sturgeon with Laser Ablation Sampling–Inductively Coupled Plasma–Mass Spectrometry (LAS-ICP-MS). Trans Am Fish Soc 128(2):352–361CrossRefGoogle Scholar
  125. Voegeli FA, Smale MJ, Webber DM et al (2001) Ultrasonic telemetry, tracking and automated monitoring technology for sharks. Environ Biol Fish 60:267–281CrossRefGoogle Scholar
  126. Wang X, Wang Q, Xie Z et al (2016) The complete mitochondrial genome of the Epinephelus lanceolatus (Perciformes: Serranidae). Mitochondrial DNA Part A 27(3):1738–1739Google Scholar
  127. Welch DW, Boehlert GW, Ward BR (2003) POST-the Pacific Ocean salmon tracking project. Oceanol Acta 25:243–258CrossRefGoogle Scholar
  128. Willette DA, Allendorf FW, Barber PH et al (2014) So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bull Mar Sci 90(1):79–122CrossRefGoogle Scholar
  129. Willmes M, Glessner JCG, Carleton SA et al (2016) 87Sr/86Sr isotope ratio analysis by laser ablation MC-ICP-MS in scales, spines, and fin rays as a nonlethal alternative to otoliths for reconstructing fish life history. Can J Fish Aquat Sci. doi: 10.1139/cjfas-2016-0103
  130. Wu X, Xie Z, Yang L et al (2015) The complete mitochondrial genome of the dusky tail grouper Epinephelus bleekeri (Serranidae: Epinephelinae). Mitochondrial DNA 26(5):722–723CrossRefPubMedGoogle Scholar
  131. Yang H, Xie Z, Li S et al (2016) The complete mitochondrial genome of the orange-spotted grouper Epinephelus coioides (Perciformes, Serranidae). Mitochondrial DNA Part A 27(3):1674–1676Google Scholar
  132. Yu H, You X, Li J et al (2016) Genome-wide mapping of growth-related quantitative trait loci in orange-spotted grouper (Epinephelus coioides) using double digest restriction-site associated DNA sequencing (ddRADseq). Int J Mol Sci 17(4):501–512CrossRefPubMedPubMedCentralGoogle Scholar
  133. Zatcoff MS, Ball AO, Sedberry GR (2004) Population genetic analysis of red grouper, Epinephelus morio, and scamp, Mycteroperca phenax, from the southeastern US Atlantic and Gulf of Mexico. Mar Biol 144:769–777CrossRefGoogle Scholar
  134. Zhuang X, Qu M, Zhang X et al (2013) Comprehensive description and evolutionary analysis of 22 grouper (Perciformes, Epinephelidae) mitochondrial genomes with emphasis on two novel genome organizations. PLoS One 8(8):e73561CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Maurício Hostim-Silva
    • 1
    Email author
  • Áthila A. Bertoncini
    • 2
  • Maíra Borgonha
    • 3
  • Jonas Rodrigues Leite
    • 4
    • 5
  • Matheus O. Freitas
    • 4
    • 5
  • Felippe Alexandre Daros
    • 5
    • 6
  • Leonardo S. Bueno
    • 5
    • 7
  • Ana Paula C. Farro
    • 1
  • Christopher C. Koenig
    • 8
  1. 1.Universidade Federal do Espírito Santo – UFESS/N São MateusBrazil
  2. 2.Universidade Federal do Estado do Rio de Janeiro – UNIRIOUrcaBrazil
  3. 3.Universidade Federal Fluminense – UFF, Outeiro São João Batista CentroNiteróiBrazil
  4. 4.Rede Abrolhos, Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Instituto Meros do BrasilCuritibaBrazil
  6. 6.Pós-graduação em Ciências e Tecnologia Ambiental (PGCTA) - Universidade do Vale do Itajaí (UNIVALI) ItajaíBrazil
  7. 7.Instituto COMAR – Conservação Marinha do BrasilJoinvilleBrazil
  8. 8.The Florida State University Coastal and Marine LaboratorySt TeresaUSA

Personalised recommendations