Skip to main content

Friction at Nanoscale—Self-assembled Monolayers

  • Chapter
  • First Online:
Book cover Commercialization of Nanotechnologies–A Case Study Approach
  • 1277 Accesses

Abstract

In many technical fields a contact between two surfaces is very important and often the subject of research. The numerous physical phenomena that occur at the contact between two materials indicate the complexity of the processes that take place at the macro, micro or nanoscale. Therefore, friction, lubrication and wear are the subjects that have been attracting attention for many years, especially as part of tribological investigations. The research has shown that these three components are of fundamental importance for surfaces in contact. The aim of this chapter is to primarily describe friction as a tribological component and lubrication as a process to control friction, at scales of various lengths, especially at the atomic level. At the atomic and molecular scale there are materials with the property to spontaneously assemble themselves into ordered structures and many surface properties are influenced by the formation of such a film. One of the procedures to make these ultrathin organic films of controlled thickness is to prepare self-assembled monolayers. These monolayers are described as a model system to study boundary lubrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Takiguchi H, Tamada K (2000) Dynamic contact angle measurement of Au (111)-thiol self-assembled monolayers by the Wilhelmy plate method. Langmuir 16(5):2394–2397

    Article  Google Scholar 

  • Adams BJ, Hector LG Jr, Siegel DJ et al (2001) Adhesion, lubrication and wear on the atomic scale. Surf Interface Anal 31:619–626

    Article  Google Scholar 

  • Allen M (2004) Introduction to molecular dynamics simulation. NIC Ser 23:1–28

    Google Scholar 

  • Beaumont N, Hancox I, Sullivan P et al (2011) Increased efficiency in small molecule organic photovoltaic cells through electrode modification with self-assembled monolayers. Energy Environ Sci 4:1708–1711

    Article  Google Scholar 

  • Beer S, Kenmoe GD, Muser MH (2015) On the friction and adhesion hysteresis between polymer brushes attached to curved surfaces: rate and solvation effects. Friction 3(2):148–160

    Article  Google Scholar 

  • Berman D, Krim J (2013) Surface science, MEMS and NEMS: progress and opportunities for surface science research performed on, or by, microdevices. Prog Surf Sci 88:171–211

    Article  Google Scholar 

  • Bhushan B, Israelachvili JN, Landman U (1994) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616

    Article  Google Scholar 

  • Bhushan B, Kulkarni AV (1996) Effect of normal load on microscale friction measurements. Thin Solid Films 278:49–56

    Article  Google Scholar 

  • Bhushan B (2001) Modern tribology handbook. CRC Press, New York

    Google Scholar 

  • Biswas S, Ray P, Chakrabarti BK (2015) Statistical physics of fracture, breakdown, and earthquake: effects of disorder and heterogeneity. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  • Blau PJ (2008) Friction science and technology: from concepts to applications. CRC Press

    Google Scholar 

  • Bowden FP, Tabor D (1938) The area of contact between stationary and between moving surfaces. In: Proceedings of the royal society of London. Ser A, Math Phys Sci: 391–413

    Google Scholar 

  • Braun OM, Kivshar YS (2004) The frenkel-kontorova model. Springer, Berlin

    Book  MATH  Google Scholar 

  • Braun O (2005) Nanotribology: mechanisms of friction on the atomic scale, printing material. Kiev, Ukraine

    Google Scholar 

  • Braun OM, Naumovets AG (2006) Nanotribology: microscopic mechanisms of friction. Surf Sci Rep 60:79–158

    Article  Google Scholar 

  • Broitman E (2014) The nature of the frictional force at the macro-, micro-, and nano-scales. Friction 2(1):40–46

    Article  Google Scholar 

  • Brovelli D, Hahner G, Ruiz L et al (1999) Highly oriented, self-assembled alkane phosphate monolayers on tantalum (V) oxide surfaces. Langmuir 15(13):4324–4327

    Article  Google Scholar 

  • Carpick RW, Salmeron M (1997) Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 97(4):1163–1194

    Article  Google Scholar 

  • Chaki NK, Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosens Bioelectron 17(1–2):1–12

    Article  Google Scholar 

  • Charitidis CA, Koumoulos EP, Dragatogiannis DA (2013) Nanotribological behavior of carbon based thin films: friction and lubricity mechanisms at the nanoscale (review). Lubricants 1:22–47

    Article  Google Scholar 

  • Chen YL, Israelachvili JN (1992) Effects of ambient conditions on adsorbed surfactant and polymer monolayers. J Phys Chem 96(19):7752–7760

    Article  Google Scholar 

  • Clear SC, Nealey PF (2001) Lateral force microscopy study of the frictional behavior of self-assembled monolayers of octadecyltrichlorosilane on silicon/silicon dioxide immersed in n-alcohols. Langmuir 17(3):720–732

    Article  Google Scholar 

  • Crone W (2008) A brief introduction to MEMS and NEMS. Springer handbook of experimental solid mechanics. Springer Science + Business Media, New York, pp. 203–228

    Google Scholar 

  • Dedkov GV (2000) Nanotribology: experimental facts and theoretical models. Physics Uspekhi 43(6):541–572

    Article  Google Scholar 

  • Doudevski I, Schwartz DK (2000) Mechanisms of self-assembled monolayer desorption determined using in situ atomic force microscopy. Langmuir 16(24):9381–9384

    Article  Google Scholar 

  • Doudevski I, Schwartz DK (2001a) Self-assembled monolayers in the context of epitaxial film growth. Appl Surf Sci 175:17–26

    Article  Google Scholar 

  • Doudevski I, Schwartz DK (2001b) Concentration dependence of self-assembled monolayer island nucleation and growth. J Am Chem Soc 123(28):6867–6872

    Article  Google Scholar 

  • Egberts P, Carpick RW (2013) Friction at the Atomic Scale. Physics 6:102

    Article  Google Scholar 

  • Filipponi L, Sutherland D (2010) NANOYOU. International Nanoscience Center (iNANO), Aarhus University

    Google Scholar 

  • Gawali AL, Kumawat SC (2011) Nanotribology. Int J Adv Eng Technol 2:300–310

    Google Scholar 

  • Gebeshuber IC, Drack M, Scherge M (2008) Tribology in biology. Tribology 2(4):200–212

    Google Scholar 

  • Gnecco E, Meyer E (2007) Fundamentals of friction and wear. Springer, Berlin

    Book  Google Scholar 

  • Grosse I, Estel K (2000) Thin surfactant layers at the solid interface. Colloid Polym Sci 278(10):1000–1006

    Article  Google Scholar 

  • Hahner G, Spencer N (1998) Rubbing and scrubbing. Phys Today 22–27

    Google Scholar 

  • Hironaka S (1984) Boundary lubrication and lubricants. Three Bond Technical News 1(9):1–8

    Google Scholar 

  • Holscher H, Schirmeisen A, Schwarz U (2008) Principles of atomic friction: from sticking atoms to superlubric sliding. Phil Trans R Soc A 366:1383–1404

    Article  Google Scholar 

  • Hsu S (2004a) Molecular basis of lubrication. Tribol Int 37(7):553–559

    Article  Google Scholar 

  • Hsu S (2004b) Nano-lubrication: concept and design. Tribol Int 37:537–545

    Article  Google Scholar 

  • Hsu S, Ying C, Zhao F (2014) The nature of friction: a critical assessment. Friction 2(1):1–26

    Article  Google Scholar 

  • Hu YZ, Granick S (1998) Microscopic study on thin film lubrication and its contributions to macroscopic tribology. Tribol Lett 5:81–88

    Article  Google Scholar 

  • Hyun-Joon K, Dae-Eun K (2009) Nano-scale friction: a review. Int J Precisi Eng Manuf 10(2):141–151

    Article  Google Scholar 

  • Israelachvili J, Tabor D (1973) Van der Waals forces: theory and experiment. Prog Surf Membr Sci 7:1–55

    Article  Google Scholar 

  • Jun Z, Yonggang M (2015) Boundary lubrication by adsorption film. Friction 3(2):115–147

    Article  Google Scholar 

  • Kim H, Kim E (2009) Nano-scale friction a review. Int J Precis Eng Manuf 10(2):141–151

    Article  Google Scholar 

  • Kopta S (2001) Nanometer scale friction and wear on self-assembled monolayers investigated by atomic force microscopy. Dissertation, University Basel

    Google Scholar 

  • Krilov SY, Frenken WM (2014) The physics of atomic-scale friction: basic considerations and open questions (review article). Phys Status Solid B 251(4):711–736

    Article  Google Scholar 

  • Krim J (1996) Atomic-scale origins of friction. Langmuir 12:4564–4566

    Article  Google Scholar 

  • Krim J (2002a) Resource letter: FMMLS-1: friction at macroscopic and microscopic length scales. Am J Phys 70(9):890–897

    Article  Google Scholar 

  • Krim J (2002b) Surface science and the atomic-scale origins of friction: what once was old is new again. Surf Sci 500:741–758

    Article  Google Scholar 

  • Krim J (2012) Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films (review). Adv Phys 61(3):155–323

    Article  Google Scholar 

  • Krim J, Solina DH, Chiarello R (1991) Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys Rev Lett 66:181–184

    Article  Google Scholar 

  • Kumar B, Kumar KB, Negi YS (2014) Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym Rev 54:33–111

    Article  Google Scholar 

  • Liu M, Lu Y, Zhang J et al (2009) MEMS/microelectronics self-assembly based on analogy of Langmuir-Blodgett approach. Microelectron Eng 86(11):2279–2282

    Article  Google Scholar 

  • Lue JT (2007) Physical properties of nanomaterials. Encycl Nanosci Nanotechnol X:1–46

    Google Scholar 

  • Manojlovic J (2006) Structure, morphology and history effects in surfactant self-assembly. Dissertation, ETH Zuerich

    Google Scholar 

  • Manojlovic J (2010) Friction and lubrication at the atomic level. In: Paper presented at the international conference, mechanical engineering in XXI century, MASING 2010, University of Niš, Serbia, 25–26 Nov 2010

    Google Scholar 

  • Manojlovic J (2012) The Krafft temperature of surfactant solutions. Thermal Sci 16(2):S633–S642

    Google Scholar 

  • Manojlovic J (2013) Self-assembled monolayers in lubrication on atomic level. In: The 2nd international conference, mechanical engineering in XXI century, faculty of mechanical engineering, Nis, Serbia, 20–21 June 2013

    Google Scholar 

  • Manojlovic J (2013) Preparation and characterization of quaternary ammonium surfactants on muscovite mica. SERBIATRIB 2013. In: 13th international conference on tribology faculty of engineering, Kragujevac, 15–17 May 2013

    Google Scholar 

  • Manojlovic J, Milojevic A, Tomic M et al (2015) Tribology in micromechatronical devices. In: SERBIATRIB, 2015, 14th international conference on tribology, Belgrade, 13–15 May 2015

    Google Scholar 

  • Mate MC, McClelland MG, Erlandsson et al (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1946

    Article  Google Scholar 

  • Mathew CM (2008) Tribology on the small scale. Oxford University Press Inc., New York

    Google Scholar 

  • Mattias L (2008) Self lubrication on the atomic scale design. Dissertation, Uppsala University

    Google Scholar 

  • Matsumoto K (2003) Surface chemical and tribological investigations of phosphorus-containing lubricant additives. Dissertation, ETH Zuerich

    Google Scholar 

  • Mellott M, Hayes W, Schwartz DK (2004) Kinetics of octadecyltrimethylammonium bromide self-assembled monolayer growth at mica from an aqueous solution. Langmuir 20(6):2341–2348

    Article  Google Scholar 

  • Miyake K, Kume T, Nakano M et al (2012) Effects of surface chemical properties on the frictional properties of self-assembled monolayers lubricated with oleic acid. Tribol Online 7(4):218–224

    Article  Google Scholar 

  • Mo Y, Turner KT, Szlufaraska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119

    Article  Google Scholar 

  • Mowat I, Moskito J, Ward I et al (2007) Analytical methods for nanotechnology. NSTI-Nanotech 4:20–23

    Google Scholar 

  • Popova E, Popov LV (2015) The research works of Coulomb and Amontons and generalized laws of friction. Friction 3(2):183–190

    Article  Google Scholar 

  • Quing Z, Qi Y, Hector LG et al (2007) Origin of static friction and its relationship to adhesion at the atomic scale. Phys Rev B 75(144114):1–7

    Google Scholar 

  • Rajkumar G, Sethuraman MG (2014) Corrosion protection ability of self-assembled monolayer of 3-amino-5-mercapto-1, 2, 4-triazole on copper electrode. Thin Sold Films 562:32–36

    Article  Google Scholar 

  • Ramanpreet S, Sreedhar M (2014) Bio-tribology and its applications in medical sciences-a review. Int J Mech Eng Rob Res 3(3):141–144

    Google Scholar 

  • Ratner M, Ratner D (2006) Nanotechnology. Pearson Education, Inc

    Google Scholar 

  • Riedoa E, Brune H (2003) Young modulus dependence of nanoscopic friction coefficient in hard coatings. Appl Phys Lett 83(10):1986–1988

    Article  Google Scholar 

  • Rymuza Z (2010) Advanced techniques for nanotribological studies. Sci Probl Mach Oper Maint 1(161):33–43

    Google Scholar 

  • Scherge M, Schaefer JA (1998) Microtribological investigations of stick/slip phenomena using a novel oscillatory friction and adhesion tester. Tribol Lett 4:37–42

    Article  Google Scholar 

  • Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 17:3081–3098

    Article  Google Scholar 

  • Shivaprakash NR (2013) Adhesion and tribology on well-defined, nano-scale rough surfaces: a gradient approach. Dissertation, ETH Zuerich

    Google Scholar 

  • Singer IL (1994) Friction and energy dissipation at the atomic scale: a review. J Vac Sci Technol A 12(5):2605–2616

    Article  Google Scholar 

  • Singh A, Suh K (2013) Biomimetic patterned surfaces for controllable friction in micro- and nanoscale devices. Micro Nano Syst Lett 1:6

    Article  Google Scholar 

  • Sokoloff J (2003) A mechanism for lubrication between surfaces with atomic level roughness. Physics Faculty Publications. Paper 4, Northeastern University, Boston

    Google Scholar 

  • Somers EA, Howlett PC, MacFarlane DR et al (2013) A review of ionic liquid lubricants. Lubricants 1:3–21

    Article  Google Scholar 

  • Spikes H (1996) Direct observation of boundary layers. Langmuir 12:4567–4573

    Article  Google Scholar 

  • Spikes H (2001) Tribology research in the twenty-first century. Tribol Int 34:789–799

    Article  Google Scholar 

  • Sung IH, Lee HS, Kim DE (2003) Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear 254:1019–1031

    Article  Google Scholar 

  • Szlufarska I, Chandross M, Carpick RW (2008) Recent advances in single-asperity nanotribology (topical review). J Phys D Appl Phys 41(123001):1–39

    Google Scholar 

  • Taylor RI (2012) Tribology and energy efficiency: from molecules to lubricated contacts to complete machines. Royal Soc Chem Faraday Discuss 156:361–382

    Article  Google Scholar 

  • Theodore L (2006) Nanotechnology: basic calculations for engineers and scientists. Wiley, New York

    Google Scholar 

  • Ulman A (2013) An introduction to ultrathin organic films: from Langmuir-Blodgett to self- assembly. Academic Press

    Google Scholar 

  • Urbakh M, Krafter J, Gourdon D et al (2004) The nonlinear nature of friction. Nature 430:525–528

    Article  Google Scholar 

  • Vakarelski IU, Brown SC, Rabinovich YI et al (2004) Lateral force microscopy investigation of surfactant-mediated lubrication from aqueous solution. Langmuir 20(5):1724–1731

    Article  Google Scholar 

  • Vanossi A, Manini N, Urbakh M et al (2013) Modeling friction: from nano to meso scales. Rev Mod Phys 85(2):529–552

    Article  Google Scholar 

  • Wang Z-J, Ma T-B, Hu Y-Z et al (2015) Energy dissipation of atomic-scale friction based on onedimensional Prandtl-Tomlinson model. Friction 3(2):170–182

    Article  Google Scholar 

  • Weymouth AJ, Meuer D, Wutscher MT et al (2013) Atomic structure affects the directional dependence of friction. Phys Rev Lett 111(126103):1–4

    Google Scholar 

  • Widmer M (2002) Modified molecular friction in artificial hip joints. Dissertation, ETH Zurich

    Google Scholar 

  • Williams L (2007) Nanotechnology demystified. McGraw-Hill Companies

    Google Scholar 

  • Xuan Z (2014) Molecular dynamics simulation of boundary lubricated contacts. Dissertation, University of Wollongong

    Google Scholar 

  • Xue Y, Li X, Li H et al (2014) Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun 5:4348. doi:10.1038/ncomms5348

    Google Scholar 

  • Yang C (2008) Role of surface roughness in tribology: from atomic to macroscopic scale. Dissertation, Berlin

    Google Scholar 

  • Yang Y, Singh J, Ruths M (2014) Friction of aromatic thiol monolayers on silver: SFA and AFM studies of adhesive and non-adhesive contacts. Royal Soc Chem 4:18801–18810

    Google Scholar 

  • Zana R (2005) Dynamics of surfactant self-assemblies. CRC Press, Taylor & Francis

    Google Scholar 

  • Zhang J (2012) Nanotribological and nanomechanical investigation of nanomaterials. Dissertation, Rice University

    Google Scholar 

  • Zhang J, Meng Y (2015) Boundary lubrication by adsorption film. Friction 3(2):115–147

    Article  Google Scholar 

  • Zhang Q, Qi Y, Hector LG et al (2007) Origin of static friction and its relationship to adhesion at the atomic scale. Phys Rev B 75(144114):1–7

    Google Scholar 

  • Zimmerli L, Nuller F, Hidber H-R et al (2005) Exploring the nano-world: friction and light at the nanometer scalenano3d visualization. http://nano-world2.cs.unibas.ch/Events/nmt-master/doc.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Manojlović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Manojlović, J. (2018). Friction at Nanoscale—Self-assembled Monolayers. In: Brabazon, D., et al. Commercialization of Nanotechnologies–A Case Study Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-56979-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56979-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56978-9

  • Online ISBN: 978-3-319-56979-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics