Skip to main content

Ferroelectric and Piezoelectric Nanomaterials—Basic Properties, Characterization and Applications

  • Chapter
  • First Online:
Commercialization of Nanotechnologies–A Case Study Approach

Abstract

Electroceramics have a wide range of applications and are a subject of extensive research activities in the fields of ion-conductivity (such as batteries and sensors), electrical insulators (substrates and multilayer integrated circuit packages), semiconductors (sensors), and superconductors. Among the electroceramic materials, ferroelectric and piezoelectric nanomaterials are technically the most challenging. They are known for their unique properties, such as high dielectric constant, as well as high piezoelectric constants, and are used in multilayer capacitors or as microwave devices within wireless communication systems. In addition, perovskite ferroelectric nanomaterials show potential for applications related to solar energy conversion and the production of storage memory devices. Ferroelectric films as functional materials are being extensively explored for various microsensor and microactuator applications, some of them being suitable for biomedical engineering. The most widely investigated perovskite ferroelectric and piezoelectric nanomaterials include BaTiO3, SrTiO3, PbZrTiO3 along with suitable dopants and multiferroic oxides, and ZnO. In this review, the main concept of ferroelectricity in perovskite oxides and related nanomaterials is discussed. Fundamentals of ferroelectric nanomaterials, including size effects of ferroelectric nanomaterials properties and phase transitions are summarized. A detailed discussion on the synthesis, fabrication, nanostructure characterization of ferroelectric and piezoelectric nanomaterials such as BaTiO3, SrTiO3, and ZnO is presented. Progress in the research of ferroelectric perovskite oxide in nanometers scale is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agilent Technologies (2013) Agilent impedance measurement handbook 4th edn. http://cp.literature.agilent.com/litweb/pdf/5950-3000.pdf. Accessed 30 Jan 2015

  • Ahmad T, Ganguli AK (2006) Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4, and PbTiO3): structural aspects and dielectric properties. J Am Ceram Soc 89:1326–1332

    Article  Google Scholar 

  • Ahn CH, Rabe KM, Triscone JM (2004) Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303:488–491

    Article  Google Scholar 

  • Allen AJ, Kruegger S, Skandan G et al (1996) Microstructural evolution during the sintering of nanostructured ceramic oxides. J Am Ceram Soc 79:1201–1212

    Article  Google Scholar 

  • Aoyagi S, Kuroiwa Y, Sawada A et al (2005) Size Effect on Crystal Structure and Chemical Bonding Nature in BaTiO3 Nanopowder. J Therm Anal Calorim 81:627

    Article  Google Scholar 

  • Bai C (2007) Scanning tunneling microscopy and its applications. Springer-Verlag Telos, New York, p 366

    Google Scholar 

  • Barr TL, Modern ESCA (2008) The principles and practice of x-ray photoelectron spectroscopy. CRC Press, Boca Raton, FL, p 376

    Google Scholar 

  • Baruwati B, Kumar DK, Manorama SV (2006) Hydrothermal synthesis of highly crystaline ZnO nanoparticles. Sens Actuators B 119:676

    Article  Google Scholar 

  • Bonnell D (2000) Scanning probe microscopy and spectroscopy. In: Theory, techniques, and applications. New York, Wiley-VCH

    Google Scholar 

  • Brandt M, Frenzel H, Hochmuth H et al (2009) Ferroelectric thin film field-effect transistors based on ZnO/BaTiO3 heterostructures. J Vac Sci Technol, B 27:1789

    Article  Google Scholar 

  • Buscaglia V, Buscaglia MT, Viviani M et al (2005) Raman and AFM piezoresponse of dense BaTiO3 nanocrystalline ceramics. J Eur Ceram Soc 25:3059–3062

    Article  Google Scholar 

  • Buscaglia MT, Viviani M, Buscaglia V et al (2006) High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramic. Phys Rev B 73: 064114-1/064114-10

    Google Scholar 

  • Caliò R, Rongala BU, Domenico C et al (2014) Piezoelectric energy harvesting solutions. Sensors 14:4755–4790

    Article  Google Scholar 

  • Chang J, Dommer M, Chang C et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371

    Article  Google Scholar 

  • Chen W, Zhu Q (2007) Synthesis of barium strontium titanate nanorods in revers microemulsion. Mater Lett 61:3378–3380

    Article  Google Scholar 

  • Cross LE (1993) Ferroelectric ceramics: tailoring properties for specific applications. Birkhauser Verlag, Basel Switzerland; Boston, MA, USA, pp 1–85

    Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor C (2004) Recent advances in the liquid phase syntheses of inorganic nanoparticles. J Chem Rev 104:3893–3946

    Article  Google Scholar 

  • Dawber M, Chandra P, Littlewood PB et al (2003) Depolarization corrections to the coercive field in thin film ferroelectrics. J Phys: Condens Matter 15:393–398

    Google Scholar 

  • Deng X, Wang ZX, Wen H et al (2006) Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering. J Am Ceram Soc 89:1059–1064

    Article  Google Scholar 

  • Diao LW, Zheng J, Pan XD et al (2014) Application of piezoelectric nanogenerator in medicine: bio-experiment and theoretical exploration. J Thorac Dis 6:1300–1306

    Google Scholar 

  • Dutta PK, Gregg JR (1992) Hydrothermal synthesis of tetragonal barium titanate (BaTiO3). Chem Mater 4:843–846

    Article  Google Scholar 

  • Emelyanov AYu, Pertsev NA, Hoffmann-Eifert S et al (2002) Grain boundary effect on the Curie Weiss law of ferroelectric ceramics and polycrystalline thin films: calculation by the method of effective medium. J Electroceram 9:5–16

    Article  Google Scholar 

  • Fang TT, Hsich HL, Shiau FS (1933) Effect of pore morphology and grain size on the dielectric properties and tetragonal-cubic phase transition of high purity barium titanate. J Am Ceram Soc 76(5):1205–1211

    Article  Google Scholar 

  • Frey MH, Xu Z, Han P et al (1998) The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206:337–353

    Article  Google Scholar 

  • Goldstein JI, Newbury DE, Echlin P et al (1992) Scanning electron microscopy and x-ray microanalysis, 2nd edn. Plenum Press, New York, p 820

    Book  Google Scholar 

  • Gu H, Hu Y, Wang H et al (2007) Fabrication of lead titanate single crystalline nanowires by hydrothermal method and their characterization. J Sol Gel Sci Technol 42:293–297

    Article  Google Scholar 

  • Gusatti M, Rosário AJ, Campos EMC et al (2010) Production and characterization of ZnO nanocrystals obtained by solochemical processing at different temperatures. J Nanosci Nanotechnol 10:1–4

    Article  Google Scholar 

  • Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818

    Article  Google Scholar 

  • Hanada N, Hirotoshi E, Chikawa T et al (2008) SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5. J Alloy Compd 450:395–399

    Article  Google Scholar 

  • Herrig H, Hempelmann R (1997) Microemulsion mediated synthesis of ternary and quaternary nanoscale mixed oxide ceramics powders. Nanostruct Mater 9:241–244

    Article  Google Scholar 

  • Hu Y, Gu H, Sun X, You J et al (2006) Photoluminescence and Raman scattering studies on PbTiO3 nanowires fabricated by hydrothermal method at low temperature. Appl Phys Lett 88:193120

    Article  Google Scholar 

  • Hu J, Nan T, Sun N et al (2015) Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bulletin 40:728–735

    Google Scholar 

  • Hwang UY, Park HS, Koo KK (2004) Low temperature synthesis of fully crystallized spherical BaTiO3 particles by the Gel-sol method. J Am Ceram Soc 87:2168–2174

    Article  Google Scholar 

  • Kim SW, Khalil KAR (2006) High-frequency induction heat sintering of mechanically alloyed alumina–yttria-stabilized zirconia nano-bioceramics. J Am Ceram Soc 89:1280–1285

    Article  Google Scholar 

  • KimYS Kim DH, Kim JD et al (2005) Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl Phys Lett 86:102907

    Article  Google Scholar 

  • Kumar B, Kim SW (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342–355

    Article  Google Scholar 

  • Kuroiwa Y, Aoyagi S, Sawada A et al (2002) Structural study of perovskite-type fine particles by synchrotron radiation powder diffraction. J Therm Anal Cal 69:933–938

    Article  Google Scholar 

  • Li B, Wang X, Li L et al (2004) Dielectric properties of fine grained BaTiO3 prepared by spark plasma sintering. Mater Chem Phys 83:23–28

    Article  Google Scholar 

  • Liu X, Liu Y, Chen W et al (2012) Ferroelectric memory based on nanostructures. Nanoscale Res Lett 7:285

    Article  Google Scholar 

  • Lobo RPSM, Mohallem NDS, Moreira RL (1995) Grain-size effects on diffuse phase transitions of sol-gel prepared barium titanate ceramics. J Am Ceram Soc 78(5):1343–1346

    Article  Google Scholar 

  • Lu K (2014) Nanomaterials: bringing new excitements to the energy world. Ann J Mater Sci Eng 1(1):2

    Google Scholar 

  • Ma H, Shieh KJ, Qiao TX (2006) Stady of transmission electron microscopy and scanning electron microscopy (SEM). Nat Sci 4:14–22

    Google Scholar 

  • Mao Y, Banerjee S, Wong SS (2003) Large-scale synthesis of single-crystalline perovskite nanostructures. J Am Chem Soc 125:15718–15719

    Article  Google Scholar 

  • Mao Y, Zhou H, Wong SS (2010) Synthesis, properties, and applications of Perovskite-Phase metal oxide nanostructures. Mater Matters 5(2):50

    Google Scholar 

  • Marjanović M, Paunović V, Prijić Z et al (2014) On the measurement methods for dielectric constant determination in Nb/BaTiO3 ceramics. INDEL, pp 38–41

    Google Scholar 

  • Meyer E (2007) Atomic force microscopy: fundamentals to most advanced applications, vol 1. New York, Springer-Verlag TELOS, p 250

    Google Scholar 

  • Mitić V, Nikolić Z, Pavlović V et al (2010) Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J Am Ceram Soc 93(1):132–137

    Article  Google Scholar 

  • Mitic VV, Paunovic V, Pavlovic V, Lj Zivkovic (2011) Sintering process influence on microstructure and intergranular impedance of rare-earth modified BaTiO3-ceramics. Sci Sinter 43(3):277–287

    Article  Google Scholar 

  • Mitic VV, Paunovic V, Purenovic J, Lj Kocic, Pavlovic V (2012) The processing parameters influence on BaTiO3-ceramics fractal microstructure and dielectric characteristics. Adv Appl Ceram: Struct, Funct Bioceramics 111(5&6):360–366

    Article  Google Scholar 

  • Mitic VV, Paunovic V, Pavlovic V (2014) Microstructure and dielectric properties of rare-earth doped BaTiO3 ceramics. Ferroelectrics 470(1):159–167

    Article  Google Scholar 

  • Moezzi A, McDonagh A, Cortie B (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22

    Article  Google Scholar 

  • Moulson AJ, Herbert JM (1995) Electroceramics. Chapman & Hall, London

    Google Scholar 

  • Murillo G, Lee M, Xu C et al (2011) Hybrid resonant energy harvester integrating ZnO NWs with MEMS for enabling zero-power wireless sensor nodes. Nano Commun Netw 2:235–241

    Article  Google Scholar 

  • Nechibvute A, Chawanda C, Luhanga P (2012) Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater Res. doi:10.1155/2012/853481

    Google Scholar 

  • Niederberger M, Garnweitner G, Pinna N et al (2004) Nonaqueous and halide free route to crystaline BaTiO3, SrTiO3 and (Ba, Sr) TiO3 and nanoparticles via a mechanism involving c-c nond formation. J Am Chem Soc 126:9120–9126

    Article  Google Scholar 

  • Niesz K, Ould-Ely T, Tsukamoto H et al (2011) Engineering grain size and electrical properties of donor-doped barium titanate ceramics. Ceram Int 37:303–311

    Article  Google Scholar 

  • Nour SE, Khan A, Nur O et al (2014) A flexible sandwich nanogenerator for harvesting piezoelectric potential from single crystalline zinc oxide nanowires. Nanomaterials Nanotechnol 4:24. doi:10.5772/59068

    Article  Google Scholar 

  • Nuraje N, Su K (2013) Perovskite ferroelectric nanomaterials. Nanoscale 5:8752–8780

    Article  Google Scholar 

  • Parashar SKS, Choudhary RNP, Murty BS (2004) Electrical properties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling. Mater Sci Eng, B 110:58–63

    Article  Google Scholar 

  • Paunovic V, Lj Zivkovic, Mitic V (2010a) Influence of rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics. Sci Sinter 42:69–79

    Article  Google Scholar 

  • Paunovic V, Mitic V, Pavlovic V et al (2010b) Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics. Process Appl Ceram 4(4):253–258

    Article  Google Scholar 

  • Paunovic V, Mitic VV, Miljkovic M, Lj Zivkovic (2012) Ho2O3 Additive effects on BaTiO3 ceramics microstructure and dielectric properties. Sci Sinter 44(2):223–233

    Article  Google Scholar 

  • Paunovic V, Mitic V, Prijic Z et al (2014) Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics. Ceram Int 40:4277–4284

    Article  Google Scholar 

  • Pazik R, Kaczorowski D, Hreniak D, Stre W, Lojkowski W (2008) Synthesis, structure and magnetic properties of BaTiO3 nanoceramics. Chem Phys Lett 452:144–147

    Article  Google Scholar 

  • Pechini MP (1967) US Patent No. 3,330,697

    Google Scholar 

  • Pithan C, Shiratori Y, Waser R et al (2006) Preparation, processing and characterization of nano crystalline BaTiO3 powders and ceramics derived from microemulsion mediated synthesis. J Am Ceram Soc 89:2908–2916

    Google Scholar 

  • Sakabe Y, Yamashita Y, Yamamoto H (2005) Dielectric properties of nanocrystalline BaTiO3 synthesis by microemulsion method. J Eur Ceram Soc 25:2739–2742

    Article  Google Scholar 

  • Sale FR (1998) The citrate-gel processing of electronic and magnetic ceramics. In: IEE colloquium on Sol-gel materials for device applications, vol 412. London, UK, IEE, p 4/1–4/7

    Google Scholar 

  • Sen S, Choudhary RNP, Tarafdar A et al (2006) Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics. J Appl Phys 99(12):124114/1–124114/8

    Google Scholar 

  • Sheng G, Zhang JX, Li YL et al (2008) Domain stability of PbTiO3 thin film under anisotropic misfit strains: phase field simulations. J Appl Phys 104:054105/1

    Google Scholar 

  • Shukla A, Choudhary RNP (2010) Ferroelectric phase-transition and conductivity analysis of La3+/Mn4+ modified PbTiO3 nanoceramics. Phys B 405:2508–2515

    Article  Google Scholar 

  • Singh KC, Nath AK (2011) Barium titanate nanoparticles produced by planetary ball milling and piezoelectric properties of corresponding ceramics. Mater Lett 65:970–973

    Article  Google Scholar 

  • Testino A, Buscaglia MT, Buscaglia V et al (2004) Kinetics and mechanism of aqueous chemical synthesis of BaTiO3 particles. Chem Mater 16:1536–1543

    Article  Google Scholar 

  • Tichý J, Erhart J, Kittinger E, Prívratská J (2010) Fundamentals of piezoelectric sensorics. Springer

    Google Scholar 

  • Tiercelin N, Dusch Y, Giordano S et al (2016) Strain mediated magnetoelectric memory. In: Atulasimha J (ed) Nanomagnetic and spintronic devices for energy-efficient memory and computing. Wiley, p 221

    Google Scholar 

  • Tura V, Mitoseriu L, Papusoi C et al (1998) Ferroelectric to paraelectric phase transition in barium titanate ceramic investigated by pyrocharge measurements. J Electroceram 2(3):163–169

    Article  Google Scholar 

  • Valasek J (1921) Piezoelectric and allied phenomena in Rochelle. Phys Rev 17:475–481

    Article  Google Scholar 

  • Vargas-Ortiz RA, Espinoza-Beltran FJ, Munoz-Saldana J (2012) Ba1-XSrXTiO3 ceramics synthesized by an alternative solid-state reaction route. In: Sintering of ceramics—new emerging techniques, pp 437–466

    Google Scholar 

  • Veljovic DJ, Jokic B, Petrovic R et al (2009) Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram Int 35:1407–1413

    Article  Google Scholar 

  • Vijatović Petrović MM, Bobić JD, Ramoška T et al (2011) Electrical properties of lanthanum doped barium titanate ceramics. Mater Charact 62:1000–1006

    Article  Google Scholar 

  • Vijaya MS (2012) Piezoelectric materials and devices: applications in engineering and medical science. CRC Press, London

    Book  Google Scholar 

  • Vijayan S, Varma H (2002) Microwave sintering of nanosized hydroxyapatite powder compacts. Mater Lett 56:827–831

    Article  Google Scholar 

  • Vives AA (ed) (2008) Piezoelectric transducers and applications. Springer, Berlin Heidelberg

    Google Scholar 

  • Vocca H, Cottone F (2014) Kinetic energy harvesting. In: Fagas G et al (eds) ICT—energy—concepts towards zero—power information and communication technology. InTech doi:10.5772/57091

  • Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  Google Scholar 

  • Wang ZL (2003) New developments in transmission electron microscopy for nanotechnology. Adv Mater 15:1497–1514

    Article  Google Scholar 

  • Wang X (2012) Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1:13–24

    Article  Google Scholar 

  • Wang LZ, Song HJ (2006) Piezoelectric nanogenerators based on zincoxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  • Wang X, Shi J (2012) Piezoelectric nanomaterials for biomedical applications. In: Ciofani G, Menciassi A (eds) Piezoelectric nanogenerators for self-powered nanodevices. Nanomed Nanotoxicology, Springer, Berlin, pp 135–172

    Google Scholar 

  • Wang LZ, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:2–24

    Article  Google Scholar 

  • Wang XH, Deng XY, Bai HL et al (2006) Two step sintering of ceramics with constante grain size II: BaTiO3 and Ni-Cu-Zn ferite. J Am Ceram Soc 89:438–443

    Article  Google Scholar 

  • Wang ZL, Poncharal P, de Heer WA (2000) Proceedings of the carbon nanotubes by in situ TEM. Microsc Microanal 6:224–230

    Google Scholar 

  • Wang X, Zhuang J, Peng Q et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  Google Scholar 

  • Xiao CJ, Zhang WW, Chi ZH et al (2007) Ferroelectric BaTiO3 nanoceramics prepared by a three-step high-pressure sintering method. Phys Status Solidi A 204(3):874–880

    Article  Google Scholar 

  • Zhang JZ, Wang ZL, Liu J et al (2003) Self-assembled nanostructures. In: Nanoscale science and technology. Kluwer Academic/Plenum Publishers, New York, p 316

    Google Scholar 

  • Zhang R, Li JF, Viehland D (2004) Effect of aliovalent substituents on the ferroelectric properties of modified barium titanate ceramics: relaxor ferroelectric behavior. J Am Ceram Soc 87:864–870

    Article  Google Scholar 

  • Zhong WL, Wang YG, Zhang PL et al (1994) Phenomenological study of the size effect on phase transition in ferroelectric particles. Phys Rev B 50:698

    Article  Google Scholar 

  • Zivkovic L, Paunovic V, Miljkovic M, Ristic MM (2006a) Microstructure evolution and dielectric properties of Nb/Mn and Dy/Mn doped barium titanate ceramics, in recent developments in advanced materials and processes. Mater Sci Forum 518:229–234

    Article  Google Scholar 

  • Zivković L, Paunović V, Stamenkov N et al (2006b) The effect of secondary abnormal grain growth on the dielectric properties of La/Mn co-doped BaTiO3 ceramics. Sci Sinter 38(3):273–281

    Article  Google Scholar 

  • Zubavichus YV, Slovokhotov YL, Nazeeruddin MK et al (2002) Structural characterization of solar cell prototypes based on nanocrystalline TiO2 anatase sensitized with Ru complexes. X-ray diffraction, XPS, and XAFS spectroscopy study. Chem Mater 14:3556–3583

    Article  Google Scholar 

Download references

Acknowledgements

The printing of this work is financed by EU project 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES. Parts of the scientific works are supported by Ministry of Education, Science and Technological Development, Serbia, projects OI172057 and TR32026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Paunović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Paunović, V., Prijić, Z., Antić, D. (2018). Ferroelectric and Piezoelectric Nanomaterials—Basic Properties, Characterization and Applications. In: Brabazon, D., et al. Commercialization of Nanotechnologies–A Case Study Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-56979-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56979-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56978-9

  • Online ISBN: 978-3-319-56979-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics